【洛谷】P1352 没有上司的舞会 的题解

【洛谷】P1352 没有上司的舞会 的题解

题目传送门

题解

经典的树形 DP,典中典qaq

树形 dp,由于一个人去与不去会影响到下一位,所以我们多开一维。

就可以推得两个转移方程:

d p [ r o o t ] [ 0 ] = ∑ s o n ( x ) max ⁡ ( d p [ r o o t ] [ 0 ] , d p [ r o o t ] [ 1 ] ) dp[root][0] = \sum_{son(x)} \max(dp[root][0], dp[root][1]) dp[root][0]=son(x)max(dp[root][0],dp[root][1])

d p [ r o o t ] [ 1 ] = h [ r o o t ] + ∑ s o n ( x ) d p [ r o o t ] [ 0 ] dp[root][1] = h[root] + \sum_{son(x)} dp[root][0] dp[root][1]=h[root]+son(x)dp[root][0]

这样的话,我们只需要找到没有上司的节点 r o o t root root 为跟,然后通过 fa() 函数进行 dp 的更新就可以了。时间复杂度 O ( n ) O(n) O(n)

代码

#include <bits/stdc++.h>
#define lowbit(x) x & (-x)
#define endl "\n"
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
namespace fastIO {
	inline int read() {
		register int x = 0, f = 1;
		register char c = getchar();
		while (c < '0' || c > '9') {
			if(c == '-') f = -1;
			c = getchar();
		}
		while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
		return x * f;
	}
	inline void write(int x) {
		if(x < 0) putchar('-'), x = -x;
		if(x > 9) write(x / 10);
		putchar(x % 10 + '0');
		return;
	}
}
using namespace fastIO;
vector <int> son[10005];
int dp[10005][2], vis[10005], h[10005], n;
void fa(int x) {
	dp[x][0] = 0;
	dp[x][1] = h[x];
	for(int i = 0; i < son[x].size(); i ++) {
		int y = son[x][i];
		fa(y);
		dp[x][0] += max(dp[y][0], dp[y][1]);
		dp[x][1] += dp[y][0]; 
	}
}
int main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	n = read();
	for(int i = 1; i <= n; i ++) {
		h[i] = read();
	}
	for(int i = 1; i < n; i ++) {
		int x, y;
		x = read(), y = read();
		vis[x] = 1;
		son[y].push_back(x);
	}
	int root;
	for(int i = 1; i <= n; i ++) {
		if(!vis[i]) {
			root = i;
			break;
		}
	}
	fa(root);
	cout << max(dp[root][0], dp[root][1]);
	return 0;
}
对于洛谷上的p1036题目,我们可以使用Python来解决。下面是一个可能的解法: ```python def dfs(nums, target, selected_nums, index, k, sum): if k == 0 and sum == target: return 1 if index >= len(nums) or k <= 0 or sum > target: return 0 count = 0 for i in range(index, len(nums)): count += dfs(nums, target, selected_nums + [nums[i]], i + 1, k - 1, sum + nums[i]) return count if __name__ == "__main__": n, k = map(int, input().split()) nums = list(map(int, input().split())) target = int(input()) print(dfs(nums, target, [], 0, k, 0)) ``` 在这个解法中,我们使用了深度优先搜索(DFS)来找到满足要求的数列。通过递归的方式,我们遍历了所有可能的数字组合,并统计满足条件的个数。 首先,我们从给定的n和k分别表示数字个数和需要选取的数字个数。然后,我们输入n个数字,并将它们存储在一个列表nums中。接下来,我们输入目标值target。 在dfs函数中,我们通过迭代index来选择数字,并更新选取的数字个数k和当前总和sum。如果k等于0且sum等于target,我们就找到了一个满足条件的组合,返回1。如果index超出了列表长度或者k小于等于0或者sum大于target,说明当前组合不满足要求,返回0。 在循环中,我们不断递归调用dfs函数,将选取的数字添加到selected_nums中,并将index和k更新为下一轮递归所需的值。最终,我们返回所有满足条件的组合个数。 最后,我们在主程序中读入输入,并调用dfs函数,并输出结果。 这是一种可能的解法,但不一定是最优解。你可以根据题目要求和测试数据进行调试和优化。希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值