洛谷P1352 没有上司的舞会(树形dp入门)

本文介绍了一道关于树形动态规划的经典题目,旨在求解在一定的上下级关系中,如何分配参与活动的人以获得最大快乐。通过建立树形结构,采用dfs进行遍历,更新节点的状态来确定最大快乐值。核心思想是上司参与则下属不参与,上司不参与时下属可以选择参与或不参与。最终输出根节点的最大快乐值。
摘要由CSDN通过智能技术生成

题目链接
这是一道很经典很简单的树形dp入门难度题
在这里插入图片描述
我们定义dp[x][0/1] 0表示x号人不参与,1表示参与。
那么dp[x][0/1] 表示状态为获取的最大快乐。
首先建图然后找到树根,开始dfs。
每次转移显然如果该人(上司)参与那么他的儿子一定不参与
因此dp[x][1]=dp[x][1]+dp[v][0]
如果该上司也不参与那么下属可以参与也可以不参与。
因此dp[x][0]=Σmax(dp[v][1],dp[v][0])


ll v[10000];
vector<ll>G[10000];
ll vis[10000];
ll dp[10000][3];

void dfs(ll rt)
{

    dp[rt][0]=0;
    dp[rt][1]=v[rt];
    for(int i=0; i<G[rt].size(); i++)
    {
        ll vv=G[rt][i];
        //dp[rt][1]=
        dfs(vv);
        dp[rt][1]+=dp[vv][0];//max(dp[rt][1],)
        dp[rt][0]+=max(dp[vv][0],dp[vv][1]);
    }

}
signed main()
{
    ll n;
    read(n);
    for(int i=1; i<=n; i++)
    {
        read(v[i]);
    }
    for(int i=1; i<n; i++)
    {
        ll u,v;
        read(u);
        read(v);
        G[v].push_back(u);
        vis[u]++;
    }
    ll rt;
    for(int i=1; i<=n; i++)
    {
        if(!vis[i])
        {
            rt=i;
            break;
        }
    }
    dfs(rt);
    printf("%lld",max(dp[rt][1],dp[rt][0]));

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值