题目链接
这是一道很经典很简单的树形dp入门难度题
我们定义dp[x][0/1] 0表示x号人不参与,1表示参与。
那么dp[x][0/1] 表示状态为获取的最大快乐。
首先建图然后找到树根,开始dfs。
每次转移显然如果该人(上司)参与那么他的儿子一定不参与
因此dp[x][1]=dp[x][1]+dp[v][0]
如果该上司也不参与那么下属可以参与也可以不参与。
因此dp[x][0]=Σmax(dp[v][1],dp[v][0])
ll v[10000];
vector<ll>G[10000];
ll vis[10000];
ll dp[10000][3];
void dfs(ll rt)
{
dp[rt][0]=0;
dp[rt][1]=v[rt];
for(int i=0; i<G[rt].size(); i++)
{
ll vv=G[rt][i];
//dp[rt][1]=
dfs(vv);
dp[rt][1]+=dp[vv][0];//max(dp[rt][1],)
dp[rt][0]+=max(dp[vv][0],dp[vv][1]);
}
}
signed main()
{
ll n;
read(n);
for(int i=1; i<=n; i++)
{
read(v[i]);
}
for(int i=1; i<n; i++)
{
ll u,v;
read(u);
read(v);
G[v].push_back(u);
vis[u]++;
}
ll rt;
for(int i=1; i<=n; i++)
{
if(!vis[i])
{
rt=i;
break;
}
}
dfs(rt);
printf("%lld",max(dp[rt][1],dp[rt][0]));
}