蓝桥杯—剪格子(dfs)

这里写图片描述

由题意可得从左上角的数开始dfs,途径的数的和等于总和的一半时退出,注意走的时候可以斜着走,当总和为奇数时无法分割,当第一个数即为总和一半时直接输出1。

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int M=15;
int m,n,sum=0;
int a[M][M],vis[M][M],ct;
int to[8][2] = {-1,0,-1,1,0,-1,0,1,1,-1,1,0,1,1,-1,-1};//可以向八个方向移动

int dfs(int x,int y,int ct)
{
    if(ct == sum)
        return 1;
    int ans = 0;
    for(int i=0; i<8; i++)
    {
        int tx = x+to[i][0];
        int ty = y+to[i][1];
        if( tx>=0 && tx<n && ty>=0 && ty<m) //边界条件
        {
            if(!vis[tx][ty] && a[tx][ty]+ct<=sum)
            {
                vis[tx][ty] = 1;//标记
                ans = dfs(tx,ty,a[tx][ty] +ct);
                if(ans)
                    return ans+1;//计数
                vis[tx][ty] = 0;
            }
        }
    }
    return 0;
}

int main()
{
    scanf("%d%d",&m,&n);
    for(int i=0; i<n; i++)
    {
        for(int j=0; j<m; j++)
        {
            scanf("%d",&a[i][j]);
            sum = sum +a[i][j];
        }
    }
    if(sum%2)
        printf("0\n");
    else if(a[0][0] == sum/2)
        printf("1\n");
    else
    {
        sum = sum/2;
        memset(vis,0,sizeof(vis));
        vis[0][0] = 1;
        printf("%d",dfs(0,0,a[0][0]));
    }
    return 0;
}
本题目链接:https://www.lanqiao.cn/courses/2784/exams/3864/question_sets/16435/problems/WB1/ 题目描述 现在有一个二维码,我们要把它裁成一个 n 行 m 列的小二维码。当然,裁时我们可以只截取一个小于 n 行 m 列的区域,但是这个区域必须包含原来的二维码。 现在,我们已经知道了原来的二维码的大小,以及每一个格子的黑白情况,问:是否存在一种裁方案,能够得到一个小二维码,使得这个小二维码恰好包含 k 个黑色格子? 请注意,这个二维码是以字符串形式给出的。其中,字符串中的 “1” 表示黑色格子,字符串中的 “0” 表示白色格子。字符串中的回车和空格都需要忽略。 输入格式 输入的第一行包含三个整数 n, m 和 k,分别表示原始二维码的行数、列数,以及小二维码中要求包含的黑色格子数。 输入的第二行到第 n + 1 行,每行包含一个长度为 m 的字符串,表示原始二维码。 输出格式 如果存在一种裁方案,能够得到一个小二维码,使得这个小二维码恰好包含 k 个黑色格子,则输出 Yes,否则输出 No。 样例输入1 5 5 2 00000 00100 01110 00100 00000 样例输出1 Yes 样例输入2 5 5 2 00000 00100 01110 00110 00000 样例输出2 No 数据规模与约定 对于 30% 的数据,1 <= n, m <= 10,1 <= k <= 5。 对于 60% 的数据,1 <= n, m <= 50,1 <= k <= 25。 对于 100% 的数据,1 <= n, m <= 100,1 <= k <= n * m。 时间限制:1s 空间限制:256MB 思路分析 本题目可以采用暴力枚举的方法来解决,我们可以先得到原先二维码中的黑色格子数目,然后再枚举所有的情况,看看是否有一种情况满足条件即可。 具体步骤如下: 首先,我们需要先统计一下原先二维码中的黑色格子数目,这个可以用一个计数器来实现,每当一个格子为黑色时,计数器加一即可。 接着,我们枚举裁后的小二维码的左上角位置,即枚举左上角是第 i 行第 j 列的方格,可以用两层循环来实现。 然后,我们再在这个位置上枚举所有可能的小二维码大小,即从这个位置开始向右最多可以扩展的列数为 min(m-j+1, k),向下最多可以扩展的行数为 min(n-i+1, k),从最小的大小开始,逐渐增大。 在每个大小下,我们可以统计一下小二维码中黑色格子的数目,如果恰好等于 k,那么就说明满足条件,输出 Yes,结束程序。如果一直到最大的大小都没有满足条件,那么就说明不存在这样的方案,输出 No 即可。 代码实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值