康托编码

康托编码是一种高效解决n个数全排列中第k个位置数值的方法,具有O(n)的时间复杂度。通过康托展开的逆过程,可以得知给定全排列数在所有排列中的顺序。例如,求解321是第6小的全排列。代码实现是通过解线性递推关系找出具体数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

n个数的全排列,按照从下到大的顺序排列,问第k个位置的数是多少?

这个问题有几种方法,不过只有康托编码的时间复杂度是最低的。是O(n),简直凶残。

1.用next_permutation来求,这个也是leetcode上的一道题,就是求其下一个排列,然后对1234…n 运行n次 next_pernutation方法就能得到第k个数了

image

思想就是这样。

2.利用康托编码来求。

其实就是康托展开的逆过程。

康托展开用来求某个全排列数是第几小的数,也就是当这些数按顺序排时第几个数。

过程如下:比如求321 是 第几小的,可以这样来想:小于3的数有1和2 两个,首位确定之后后面两位有2!中情况,所以共有2*2!=4种。

小于2的数只有一个1,所以有1*1!=1种情况,最后一位是1,没有比一小的数,所以是0*0!=0

综上:小于321的数有4+1=5个,所以321是第六小的数。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值