- 博客(20)
- 收藏
- 关注
原创 机器学习笔记——7 神经网络(一个BP神经网络的python实现:手写数字识别)
机器学习笔记——7 神经网络(一个BP神经网络的python实现:手写数字识别)本篇介绍神经网络,首先讨论神经网络的基本架构,然后讨论神经网络是依据什么进行学习的,进一步总结神经网络并讨论它的优势。然后我们具体的讨论BP神经网络,它基于梯度迭代算法,我们讨论它的递推式和梯度更新公式,最后利用理论上的讨论结果,用python具体地实现一个识别手写数字的BP神经网络。神经网络的基本架构网络层...
2019-09-06 01:40:34 3068 2
原创 机器学习笔记——11 混合高斯模型(Mixtures of Gaussian):利用EM算法估计参数
机器学习笔记——11 混合高斯模型(Mixtures of Gaussian):利用EM算法估计参数
2019-07-19 22:08:18 570
原创 机器学习笔记——14 矩阵谱分解与奇异值分解及其背后的线性算子理论 (实战项目:利用SVD进行图像压缩)
机器学习笔记——14 奇异值分解(图像压缩)
2019-07-17 14:44:23 1789
原创 (番外篇3)机器学习课程 实践案例
机器学习课程 实践案例实战项目一:简单线性模型下BGD、SGD、Mini-Batch GD、公式解OSL和LWLR的实现 (python)实战项目二:利用logistic回归进行数据分类(python)实战项目三:利用LDA进行数据分类(python)实战项目四:利用BP神经网络识别手写数字(python)实战项目五: 利用k-means实现图像压缩(python)实战项目一:简单...
2019-06-14 13:48:24 624
原创 (番外篇4)python 简介(python整体介绍 -> python基础 ->numpy模块)
学习python的一些方式:实践入门: 廖雪峰官网经典书籍:Head_First_Python(中文版)利用Python进行数据分析python源码剖析…python整体介绍:python是一种解释型高级语言设计理念:一切皆对象语言的动态性函数的引用传参自动垃圾回收机制包罗万象的模块资源python是一种解释型高级语言解释型语言与编译型语言(C语言)的区别:...
2019-06-14 13:28:15 376
原创 机器学习笔记——16 聚类(clustering):系统聚类与k-means聚类及对“距离”的重新认识(实战项目:利用k-means实现对图像的压缩)
机器学习笔记——11 k-means聚类算法及其改进(利用k-means实现对图像的压缩)
2019-05-28 15:28:57 674
原创 (番外篇2) python编程笔记
python编程笔记整体注意点一切皆对象,对象的概念贯穿整个python设计中。可变对象与不可变对象。可变对象指的是在数据类型的内存地址上可以直接修改,不可变则不能修改。不可变对象最典型的有元组、整数等,而可变对象最典型的有列表。可迭代性。变量名。变量名指向一个内存地址(指向一个对象),函数内可以使用全局变量,但是无法改变该变量指向的地址。如果需要修改,需要声明:“global 变量名...
2019-05-12 18:39:22 215
原创 机器学习笔记——2 简单线性模型及局部加权线性模型的基本原理和python实现(参数估计的两个基本角度:几何直观和概率直观。函数最值问题的两大基本算法:梯度方法与迭代方法)
简单线性模型线性模型是什么?线性模型是监督学习的各类学习算法最基本的一类学习算法,它的基本特性在于“线性”性质。线性是我们能处理的一类最简单的情况,同时其用处也非常广泛。其假设我们的样本空间χ\chiχ到标记空间γ\gammaγ之间的映射关系是线性的,如下所示:y=θ0x0+θ1x1+...+θnxny = \theta_0x_0+\theta_1x_1+...+\theta_nx_ny...
2019-04-11 22:51:19 1154
原创 机器学习笔记——5 生成学习算法(线性判别法LDA、二次判别法QDA及朴素贝叶斯NB算法的数学原理及其python实现)
生成学习算法(Generative Learning Algorithm)本篇介绍另外一种分类算法,这类算法跟之前广义线性模型下的各种分类特例,比如logit分类、softmax分类等,在基本思想有根本的不同,这类算法称为生成学习算法。本篇将首先介绍生成学习算法的基本思想,以此为基础,介绍在属性值为连续性和离散型下的两类常用的生成学习算法,分别是高斯判别分析(Guass Discriminat...
2019-04-10 13:46:19 1911 1
原创 机器学习笔记——4 广义线性模型的基本思想和各个常用的回归特例(附logistic模型的python实现)
广义线性模型(Generalized Liner Model)的基本思想和常用的回归特例为什么需要广义线性模型?“广义”和“线性”的含义是什么?首先我们需要解释线性的重要性。线性之所以如此重要,其本质原因在于两方面:线性形式相对是简单的,而且我们擅长处理线性问题,无论是在工程实现上还是在数学分析上。在线性的世界里,无论是对象本身的描述还是变换的描述,我们都有很好的工具和语言去运用和表述它...
2019-04-09 00:48:23 1576
原创 机器学习笔记——3 logistic模型和probit模型基本原理,从哲学视角谈谈统一二者的潜变量模型
logistic模型和probit模型的统一及其拓展监督学习的两种类别在监督学习中,根据标签值的类型可以将其分为两类:一类是定量数据,其分为计量型和计数型,这种可以用上一节介绍的简单线性模型解决,一般可以称为回归问题。另一类即是属性数据,属性数据也有两种,分别是名义数据和有序数据,这一类的数据的数值大小已经没有运算的意义了,一般称为分类问题。分类问题的两个基本模型我们讨论的分类问...
2019-03-28 13:35:58 10643
原创 (番外篇1) 贝叶斯超参数的确定方法(附自适应搜索法、牛顿迭代法和二分查找法的python实现)
(番外篇1) 贝叶斯超参数的确定方法(附自适应搜索法、牛顿迭代法和二分查找法的python实现)背景说明在贝叶斯统计中,总体分布的参数θ\thetaθ不再被视为一个未知的常数处理,而是认为参数θ\thetaθ也有一个分布,事实上,由于θ\thetaθ是未知的不确定的东西,因此用概率分布的语言来描述是很有优势的。参数θ\thetaθ一般需要先综合已有信息,确定好先验分布π(θ)\pi(\th...
2019-03-26 19:08:31 1809
原创 机器学习笔记——1 绪论
绪论首要问题: 什么是机器学习?从人的学习经验来看,我们能够总结日常生活经验,从而对新面临的情况做出决策。搬移到机器的层面,所谓经验是以数据的形式存在,因此我们需要从数据获得一定的模型,这中间的学习过程,正是机器学习发挥作用的地方,它类似与人的学习,这也正是其名字的由来。抽象地讲,从数据到模型的中间需要学习算法(关于如何学习的算法)。因此从这个层面来看,机器学习可以说是关于学习算法的学问...
2019-03-18 13:08:19 283
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人