(番外篇1) 贝叶斯超参数的确定方法(附自适应搜索法、牛顿迭代法和二分查找法的python实现)

本文介绍了在贝叶斯统计中确定超参数的方法,特别是针对二项分布参数p的超参数α和β的确定。通过先验分位数,使用牛顿迭代法和二分查找法解决非线性方程的零点问题。在实际应用中,由于牛顿法可能不收敛,二分查找法被证明更为可靠。并提供了相关Python代码实现和测试案例。
摘要由CSDN通过智能技术生成

(番外篇1) 贝叶斯超参数的确定方法(附自适应搜索法、牛顿迭代法和二分查找法的python实现)

背景说明

  • 在贝叶斯统计中,总体分布的参数 θ \theta θ不再被视为一个未知的常数处理,而是认为参数 θ \theta θ也有一个分布,事实上,由于 θ \theta θ是未知的不确定的东西,因此用概率分布的语言来描述是很有优势的。
  • 参数 θ \theta θ一般需要先综合已有信息,确定好先验分布 π ( θ ) \pi(\theta) π(θ),然后利用新进的样本信息进行更新,从而得到后验分布 π ( θ ∣ x ) \pi(\theta|x) π(θx),这个过程中如果 π ( θ ) \pi(\theta) π(θ) π ( θ ∣ x ) \pi(\theta|x) π(θx)仍然是同一种分布,则称 π ( θ ) \pi(\theta) π(θ)是总体分布参数 θ \theta θ的共轭先验分布,共轭先验分布具有很好的性质,体现在计算简单和具备可解释性上。
  • 常用的共轭先验分布有
总体分布 参数 共轭先验分布
二项分布 发生概率 贝塔分布
正态分布 均值 正态分布
正态分布 方差 倒伽马分布
泊松分布 均值 伽马分布
指数分布 均值倒数 伽马分布
  • 我们知道,二项分布在现实中是广泛存在的,因此当我们选择其先验分布为贝塔分布 B e ( α , β ) Be(\alpha,\beta) Be(α,β)时(共轭),我们还需要给其两个参数赋予初始值,这就是超参数确定问题。

确定超参数的几个方法

  1. 利用先验矩
  2. 利用先验分位数
  3. 利用先验矩和先验分位数
  4. 其他方法

一个实例:二项分布参数p的超参数确定

思路分析

根据上文所讲的,二项分布的共轭先验分布为 B e ( α , β ) Be(\alpha,\beta) Be(α,β),我们将采用3. 利用先验分位数来确定。
我们根据先验信息,知道了 θ \theta θ的两个分位数,比如为上下四分位数 θ L \theta_{L} θL θ U \theta_{U} θU,因此可以得到两个方程式:
∫ 0 θ L Γ ( α + β ) Γ ( α ) Γ ( β ) θ α − 1 ( 1 − θ ) β − 1 d θ = 0.25 ∫ 0 θ u Γ ( α + β ) Γ ( α ) Γ ( β ) θ α − 1 ( 1 − θ ) β − 1 d θ = 0.75 \begin{aligned} &\int_{0}^{\theta_L}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta = 0.25 \\ &\int_{0}^{\theta_{u}}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta = 0.75 \end{aligned} 0θLΓ(α)Γ(β)Γ(α+β)θα1(1θ)β1dθ=0.250θuΓ(α)Γ(β)Γ(α+β)θα1(1θ)β1dθ=0.75

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值