【题解】codeforces778C Peterson Polyglot

题目链接

题意:给定一棵trie树,可以删除一层边,再将父边被删且父亲相同的结点对应的子树合并得到一棵新trie树,求新trie树的最小结点数。

分析:启发式合并。在合并结点u的子树时,选择将小子树合并到大子树里,这样总的合并的时间复杂度是O(nlgn)的。

        证明:合并的耗时来自于对小子树的遍历。设全体小子树的遍历总量为T,考虑每个结点u对T的贡献。设结点u可以作为小子树的第i1层、i2层、...、it层(i1<i2<...<it),则结点u对T的贡献为t。由合并的方式(小子树合并到大子树)知对应的子树tree1,tree2,...,treet有size(tree1)<size(tree2)/2<...<size(treet)/2^t。所以t不超过lgn。所以T为nlgn级别的量。

        程序实现上可以先正着将结点u的小子树合并到u的最大子树里,再倒着删除,然后考虑u的子结点。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=6e5+10,maxl=26;
int n,G[maxn][maxl],sc[maxn],sz[maxn],po[maxn];
int f[maxn];
void dfs1(int u)
{
	sz[u]=1;
	for (int i=0;i<maxl;i++)
	    if (G[u][i])
		{
		    dfs1(G[u][i]);
		    if (sz[G[u][i]]>sz[po[u]]) po[u]=G[u][i];
			sz[u]+=sz[G[u][i]];
		}
}
void Union(int u,int v,int &s)
{
	s++;
	for (int i=0;i<maxl;i++)
	    if (G[u][i]&&G[v][i])
	        Union(G[u][i],G[v][i],s);
	    else if (G[u][i]&&!G[v][i])
	        G[v][i]=G[u][i];
}
void Delete(int u,int v)
{
	for (int i=0;i<maxl;i++)
	    if (G[u][i]==G[v][i])
		    G[v][i]=0;
	    else if (G[u][i]&&G[v][i])
	        Delete(G[u][i],G[v][i]);
}
void dfs2(int u,int h)
{
	if (!sc[u]) return ;
	int sum=1;
	for (int i=0;i<maxl;i++)
	    if (G[u][i]&&G[u][i]!=po[u])
	    	Union(G[u][i],po[u],sum);
	f[h]+=sum;
	for (int i=maxl-1;i>=0;i--)
	    if (G[u][i]&&G[u][i]!=po[u])
	        Delete(G[u][i],po[u]);
	for (int i=0;i<maxl;i++)
	    if (G[u][i])
	        dfs2(G[u][i],h+1);
}
int idx(char c)
{
	return c-'a';
}
int main()
{
	cin>>n;
	for (int i=1;i<n;i++)
	{
		int u,v;
		char ch[2];
		scanf("%d%d%s",&u,&v,ch);
		G[u][idx(ch[0])]=v;
		sc[u]++;
	}
	dfs1(1);
	dfs2(1,1);
	int ans=1;
	for (int i=2;i<=n;i++)
	    if (f[ans]<f[i])
	        ans=i;
	cout<<n-f[ans]<<endl<<ans;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值