每日一题Day73

最长的最短路径的求解

描述

设计一个算法,求图G中距离顶点v的最短路径长度最大的一个顶点。

输入

多组数据,每组数据m+2行。每组数据第一行为两个整数n和m,代表有n个顶点m条路。顶点编号为1到n。第二行到第m+1行每行有三个整数a,b和c,代表顶点a和顶点b之间有一条长度为c的路。第m+2有一个整数v,代表顶点v。当n和m都等于0时,输入结束。

输出

每组数据输出两行。第一行为最短路径最长的顶点编号c,第二行为两点的最短距离d。

样例输入1 

4 4
1 2 1
2 3 1
3 4 1
2 4 1
4
4 3
1 2 3
2 3 2
2 4 6
3
0 0

样例输出1

1
2
4
8

解答:Dijkstra算法求单源最短路径,再根据所求出的最短路径找出最长的最短路径。

#include<stdio.h>
#define maxn 200
#define inf 1e9

int n;
int e[maxn][maxn];
int dis[maxn];
int visit[maxn];

void Dijkstra(int s)
{
	int min,k;
	for(int i=1; i<=n; i++)
	{
		dis[i]=e[s][i];
		visit[i]=0;
	}
	dis[s]=0;
	visit[s]=1;
	for(int i=0; i<n-1; i++)
	{
		min=inf;
		for(int i=1; i<=n; i++)
		{
			if(!visit[i] && dis[i]<min)
			{
				min=dis[i];
				k=i;
			}
		}
		visit[k]=1;
		for(int i=1; i<=n; i++)
		{
			if(!visit[i] && dis[i]>dis[k]+e[k][i])
				dis[i]=dis[k]+e[k][i];
		}
	}
}

int main()
{
	int m,s;
	int x,y,d;
	while(1)
	{
		scanf("%d %d",&n,&m);
		if(n==0 && m==0)
			break;
		for(int i=1; i<=n; i++)
			for(int j=1; j<=n; j++)
				e[i][j]=inf;
		while(m--)
		{
			scanf("%d %d %d",&x,&y,&d);
			e[x][y]=e[y][x]=d;
		}
		scanf("%d",&s);
		Dijkstra(s);
		int ans,max=-1;
		for(int i=1; i<=n; i++)
		{
			if(dis[i]>max && dis[i]<inf)
			{
				max=dis[i];
				ans=i;
			}
		}
		printf("%d\n%d\n",ans,max);
	}
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值