数值分析方法学习(1)

数值分析涉及对连续问题的算法研究,如有限单元法(FEM)和边界单元法(BEM)。FEM通过变分原理和加权余量法将计算域离散化,而BEM通过边界积分方程减少计算量,尤其适用于无限传播域。两者各有优缺点,FEM更通用,BEM在处理边界问题时更高效。
摘要由CSDN通过智能技术生成

1、数值分析定义:

 L. N. Trefethen 就给出了数值分析方法的定义:

Numerical analysis is the study of algorithms for the problems of continuous problems.
---- Lloyd N. Trefethen, Cornell University

数值分析是研究连续问题的算法的科学。

首先,连续问题是从物理或者其它学科中抽象出来的复杂模型问题,一般是无穷维问题且很难找到解析解。这些棘手的连续问题成为数值分析的目标对象。

其次,求解连续问题的算法的设计和分析是数值分析的核心内容,它们的目的是将连续的无穷维的问题离散化,得到一个离散的有限维的可解问题,进而得到近似解。同时近似解的精度可以达到工程应用的精度范围。

2、常见数值分析方法:

常见数值分析方法有很多,分别在不同的研究领域扮演着非常重要的角色。其中应用最广应用场景最多的两种数值分析方法可以认为是有限单元法(FEM),边界单元法(BEM)。

01 有限单元法

有限元方法通过变分原理和加权余量法,把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数 形式,便构成不同的有限元方法。 

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元 上的近似解构成。

从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。

从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格。

从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。

不同的组合 同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数 ;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。

插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。

单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。

在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线 性插值函数、二阶或更高阶插值函数等。

对于有限元方法,其基本思路和解题步骤可归纳为

  • 建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
  • 区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
  • 确定单元基函数:根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元 具有规则的几何形状,在选取基函数时可遵循一定的法则。
  • 单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点 的参数值)的代数方程组,称为单元有限元方程。
  • 总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进 行累加,形成总体有限元方程。
  • 边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件 )、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法 则对总体有限元方程进行修正满足。
  • 解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

02 边界单元法

在声场,电磁场等无限传播域内边界元法可能更有效。

以声场为例,声音向外传播,作用区间是一个典型的无限范围,如果使用FEM,需要对整个区域划分网格,在三维空间随着计算范围的增大,四面体或者六面体网格数目急剧增大,计算量呈现指数上升。而采用BEM,只需要求解声场边界上的数值,大大降低了计算量,提高了计算效率。

边界元法与有限元法相比,具有以下显著优点:

  • 计算精度高:边界元素法直接求解边界广义场源的分布。边界上任一点场量将通过线性叠加各离散广义场源的作用而得到,不必经微分计算间接得到。
  • 计算速度快:由于仅对边界离散化,它降低了问题的维数,不必如有限差分及有限元法那样需引进大量区域变量,使变量数极大减少。
  • 处理复杂边界能力强:由于只离散边界,大大降低了几何处理复杂性,从而增强了处理复杂边界的能力。

对于边界元方法,其基本思路和解题步骤可归纳为

  • 求解基本解:利用算子的基本解作为权函数,按加权余量格式得到区域上的积分方程;
  • 将计算区域内的微分方程变换为区域边界上的积分方程: 利用高斯公式(格林函数)建立区域内积分和边界积分的关系,从而得到区域内任意一点的通解变量表示的积分表达式;(利用格林函数可以将三维体积分转为二维面积分)
  • 求解边界积分方程: 将基本解的奇异点P趋于边界点p,得到边界积分方程。利用加权余量法建立边界积分方程。
  • 边界积分方程离散为线性代数方程组:建立边界线性划分网格,建立线性方程组,求解方程。

3、FEM与BEM对比:

  • FEM 是一种纯数值解法,而BEM是半数值解,也就是说BEM要以解析基本解为前提条件,有些情形比如非均匀介质,各向无规律异性等问题无法处理。
  • BEM方法最后形成的线性方程组为非对称满秩矩阵,限制了工程上的求解规模。桌面单机几千自由度就已无法解出结果,虽然通过FMM(快速多极子方法)解决了这个问题,但因为FMM算法本身实现也有一定难度,因而没有FEM应用广泛。

目前,边界元在电磁和声场领域应用较多,在连续介质结构也有较多研究,商业软件有BEASY,IntegratedSoft,FastBEM等。

参考:

(39条消息) 边界元方法(一)_边界元法-CSDN博客

一篇文章入门边界元方法_理论_科普_求解技术_网格处理_电磁基础_结构基础-仿真秀干货文章 (fangzhenxiu.com)

数值计算的六大方法 - 知乎 (zhihu.com)

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZMMK369

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值