FlatBuffers:flatc源码简析

本文简要分析了Google的FlatBuffers编译器flatc的工作流程,包括词法分析、语法分析和代码生成。FlatBuffers是一个用于高性能序列化和反序列化的库,常用于游戏和对性能要求高的系统。flatc的解析过程结合了词法分析和语法分析,通过处理命令行参数,读取源文件,生成目标语言的API。词法分析在Lexer类中完成,而语法分析则提取结构信息并保存在解析树中。最后,代码生成器根据解析到的信息生成目标代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FlatBuffers 是Google推出的一个跨平台、跨语言的序列化和反序列化库,主要用于游戏以及对性能要求较高的系统中,例如RPC框架、保存端测推理的模型文件等(如TFLite)。端测不同于服务器,内存和算力等资源相对于服务器十分有限,想要缩短整个推理的时间和内存消耗,模型加载的阶段也需要考虑。FlatBuffers可以只使用一块内存进行解析,恰好满足这些要求。其使用步骤如下:

  1. 下载源码编译得到一个编译该库指定的IDL(Interface Definition Language)所定义的Schema的编译器flatc;
  2. 按照IDL的语法编写Schema;
  3. 使用第一步编译出的flatc编译第二步写出的Schema,得到对应语言的序列化和反序列化接口;
  4. 使用第三步得到的接口进行序列化和反序列化。

具体使用方法参考官方文档即可。一般情况下,我们只需要知道FlatBuffers这个库是怎么使用的就够了,并不需要知道我们编写的Schema是如何被编译生成对应语言的接口的。

但是有意思的是,FlatBuffers包含了两个我感兴趣的东西:一个是它序列化数据的时候的思想,之前在FlatBuffer内部解析原理简介一文中有做过总结;另一个就是它的编译器。

俗话说麻雀虽小五脏俱全,作为一个编译器,虽然相比于GCC、LLVM等它非常简单,但是它的代码中对于词法分析、语法分析以及代码生成等都有体现。

1. 工作流程

flatc的入口位于flatbuffers/src/flatc_main.cpp中,其具体工作流程如图1所示。整个工作流程可以分为三部分:

  1. 解析命令行、初始化;
  2. 对源文件进行解析,涉及词法分析和语法分析,这两个阶段是合并在一起的;
  3. 目标语言的代码生成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值