环境配置
windows10
anaconda3
python3.8
pychrm-community-2022.1.3
问题
①imageio.imread
源代码
image = np.array(imageio.imread(fname))
报错
DeprecationWarning: Starting with ImageIO v3 the behavior of this function will switch to that of iio.v3.imread. To keep the current behavior (and make this warning dissapear) use `import imageio.v2 as imageio` or call `imageio.v2.imread` directly.
image = np.array(imageio.imread(fname))
解决方法一
image = np.array(imageio.v3.imread(fname))
解决方法二
image = np.array(plt.imread(fname))
②scipy.misc.imresize
源代码
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T
报错
module 'scipy.misc' has no attribute 'imresize'
解决方法
首先导入模块
from skimage.transform import resize
修改代码为
my_image = resize(image, output_shape=(num_px, num_px)).reshape((1, num_px * num_px * 3)).T
完整代码
import numpy as np
from matplotlib import pyplot as plt
import h5py
import pylab
from skimage.transform import resize
def load_dataset():
train_dataset = h5py.File(
'F:/JupyterNotebook/吴恩达深度学习作业/01.机器学习和神经网络/2.第二周 神经网络基础/编程作业/datasets/train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File(
'F:/JupyterNotebook/吴恩达深度学习作业/01.机器学习和神经网络/2.第二周 神经网络基础/编程作业/datasets/test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
index = 5
plt.imshow(train_set_x_orig[index])
pylab.show()
print("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode(
"utf-8") + "' picture.")
# 训练集示例数量
m_train = train_set_x_orig.shape[0]
# 测试集示例数量
m_test = test_set_x_orig.shape[0]
# 训练图像的高度也等于训练图像的宽度
num_px = train_set_x_orig.shape[1]
print("训练集示例数量: m_train = " + str(m_train))
print("测试集示例数量: m_test = " + str(m_test))
print("图像高度/宽度: num_px = " + str(num_px))
print("图像维度: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print("train_set_x 维度: " + str(train_set_x_orig.shape))
print("test_set_x 维度: " + str(test_set_x_orig.shape))
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
print("train_set_x_flatten 维度: " + str(train_set_x_flatten.shape))
print("train_set_y 维度: " + str(train_set_y.shape))
print("test_set_x_flatten 维度: " + str(test_set_x_flatten.shape))
print("test_set_y 维度: " + str(test_set_y.shape))
# 下面两句对比着看更容易理解如何reshape
# print(train_set_x_orig)
# print("重塑后的检查维度: " + str(train_set_x_flatten[0:5, 0]))
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255
def sigmoid(z):
s = 1 / (1 + np.exp(-z))
return s
# 测试代码
# print("sigmoid([0, 2]) = " + str(sigmoid(np.array([0, 2]))))
def initialize_with_zeros(dim):
# !!! zeros括号内填数组行列数时,加一对括号 !!!
w = np.zeros((dim, 1))
b = 0
# assert()检查条件,不符合就终止程序,终止报错“AssertionError”
assert (w.shape == (dim, 1))
# isinstance()判断一个变量是否是某个类型
assert (isinstance(b, float) or isinstance(b, int))
return w, b
# 测试代码
# dim = 2
# w, b = initialize_with_zeros(dim)
# print("w = " + str(w))
# print("b = " + str(b))
def propagate(w, b, X, Y):
m = X.shape[1]
A = sigmoid(np.dot(w.T, X) + b)
cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
dw = 1 / m * np.dot(X, (A - Y).T)
db = 1 / m * np.sum(A - Y)
assert (dw.shape == w.shape)
assert (isinstance(db, float))
cost = np.squeeze(cost)
assert (cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
# # 测试代码
# w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1, 2], [3, 4]]), np.array([[1, 0]])
# grads, cost = propagate(w, b, X, Y)
# print("dw = " + str(grads["dw"]))
# print("db = " + str(grads["db"]))
# print("cost = " + str(cost))
def optmize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
costs = []
for i in range(num_iterations):
grads, cost = propagate(w, b, X, Y)
dw = grads["dw"]
db = grads["db"]
w = w - learning_rate * dw
b = b - learning_rate * db
if i % 100 == 0:
costs.append(cost)
if print_cost and i % 100 == 0:
print("迭代%i次后的损失是: %f" % (i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
# 测试代码
# params, grads, costs = optmize(w, b, X, Y, num_iterations=100, learning_rate=0.009, print_cost=False)
# print("w = " + str(params["w"]))
# print("b = " + str(params["b"]))
# print("dw = " + str(grads["dw"]))
# print("db = " + str(grads["db"]))
# print(costs)
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if A[0, i] <= 0.5:
Y_prediction[0, i] = 0
else:
Y_prediction[0, i] = 1
assert (Y_prediction.shape == (1, m))
return Y_prediction
# print("prdictions = " + str(predict(w, b, X)))
def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
w, b = initialize_with_zeros(X_train.shape[0])
parameters, grads, costs = optmize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
w = parameters["w"]
b = parameters["b"]
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
print("训练准确率:{}%".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("测试准确率:{}%".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train": Y_prediction_train,
"w": w,
"b": b,
"learning_rate": learning_rate,
"num_iterations": num_iterations}
return d
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations=2000, learning_rate=0.005, print_cost=False)
index = 1
plt.imshow(test_set_x[:, index].reshape((num_px, num_px, 3)))
pylab.show()
print("y = " + str(test_set_y[0, index]) + ", you predicted that is a \"" + classes[
int(d["Y_prediction_test"][0, index])].decode("utf-8") + "\" picture.")
# 绘制损失函数与迭代次数关系图
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('costs')
plt.xlabel('iterations(per hundreds)')
plt.title("Learning rate = " + str(d["learning_rate"]))
plt.show()
# 观察不同学习率下,绘制损失函数与迭代次数的关系
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print("learning rate is: " + str(i))
models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations=1500, learning_rate=i,
print_cost=False)
print('\n' + "--------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]), label=str(models[str(i)]["learning_rate"]))
plt.ylabel('costs')
plt.xlabel('iterations')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
fname = 'F:/JupyterNotebook/吴恩达深度学习作业/01.机器学习和神经网络/2.第二周 神经网络基础/编程作业/images/cat_in_iran.jpg'
image = np.array(plt.imread(fname))
my_image = resize(image, output_shape=(num_px, num_px)).reshape((1, num_px * num_px * 3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
pylab.show()
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[
int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
注意有3处路径需改成自己的文件路径