A Simple Problem with Integers(线段树之区间点的成段更新)

萌萌哒的传送门


<1>线段树的另一个知识点,区间点的成段更新,此处需要学习一下一个新的知识点,延迟标记.

<2>延迟标记是用来优化线段树的更新和查找的时间复杂度的,总的来说,就是对于当前找到的

这一段区间进行标记,然后覆盖其子区间,这样就可以节省时间,不必要去更新到叶子节点去;

不过如果下次需要修改到其子区间的话,在把延迟标记传给子区间就行,这就是pushup和pushdown

的意义;


#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <set>
#include <queue>
#include <vector>
#include <cstdlib>
#include <algorithm>

#define ls u << 1
#define rs u << 1 | 1
#define lson l, mid, u << 1
#define rson mid + 1, r, u << 1 | 1

using namespace std;
typedef long long ll;
const int M = 1e5 + 100;
ll sum[M << 2],tmp[M << 2];

void pushup(int u){
    sum[u] = sum[ls] + sum[rs];
}

void pushdown(int l,int r,int u){
    int mid = (l + r) >> 1;
    if(tmp[u]){
        tmp[ls] += tmp[u];
        tmp[rs] += tmp[u];
        sum[ls] += (mid - l + 1) * tmp[u];
        sum[rs] += (r - mid) * tmp[u];
        tmp[u] = 0; //注意消除延迟标记.
    }
}

void build(int l,int r,int u){  //建树
    if(l == r){
        scanf("%I64d",sum + u);
    }
    else {
        int mid = (l + r) >> 1;
        build(lson);
        build(rson);
        pushup(u);
    }
}


void update(int L,int R,int c,int l,int r,int u){
    int mid = (l + r) >> 1;
    if(L <= l && R >= r){
        tmp[u] += c;
        sum[u] += 1LL * (r - l + 1) * c;
        return;
    }
    pushdown(l,r,u);
    if(L <= mid) update(L,R,c,lson);
    if(R > mid) update(L,R,c,rson);
    pushup(u);
}

ll query(int L,int R,int l,int r,int u){
    int mid = (l + r) >> 1;
    if(L <= l && R >= r){
        return sum[u];
    }
    ll res = 0;
    pushdown(l,r,u);
    if(L <= mid) res += query(L,R,lson);
    if(R > mid) res += query(L,R,rson);
    return res;
}

int main(){
    //freopen("in","r",stdin);
    int n,m;
    char s[10];
    cin>>n>>m;
    memset(tmp,0,sizeof(tmp));
    build(1,n,1);
    while(m--){
        int x,y;
        scanf("%s %d %d",s,&x,&y);
        if(s[0] == 'C'){
            int c;
            scanf("%d",&c);
            update(x,y,c,1,n,1);
        }
        else {
            printf("%I64d\n",query(x,y,1,n,1));
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值