在风神的博客里这道题是费用流的入门题,给风神跪了。。。
个人觉得这道题目挺好的,作为入门题还是有点难的吧? 这道题的做法很多,我是直接裸的跑费用流,跑了八百多毫秒。。。么么哒
题意: 我都看得懂,这就不用说了。。。。
题解: 建立源点,汇点,源点往小矮人连一条流量为1,费用为0的边,每个房间往汇点连一条流量为1,费用为0的边。然后每个点往其右和下一个点建一条流量为INF,费用为1的无向边,表示每一个点可以走过INF个小矮人,每个小矮人走一步花费1刀,这样图就建成了。
/* ***********************************************
Author :xdlove
Created Time :2015年08月18日 星期二 13时18分54秒
File Name :xd.cpp
************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/********************************
please don't hack me!! /(ToT)/~~
__------__
/~ ~\
| //^\\//^\|
/~~\ || T| |T|:~\
| |6 ||___|_|_||:|
\__. / o \/'
| ( O )
/~~~~\ `\ \ /
| |~~\ | ) ~------~`\
/' | | | / ____ /~~~)\
(_/' | | | /' | ( |
| | | \ / __)/ \
\ \ \ \/ /' \ `\
\ \|\ / | |\___|
\ | \____/ | |
/^~> \ _/ <
| | \ \
| | \ \ \
-^-\ \ | )
`\_______/^\______/
************************************/
#define clr(a) memset(a,0,sizeof(a));
typedef long long ll;
const int MAXN = 100 * 100 + 50;
const int MAXM = MAXN * 10;
const int INF = 0x3f3f3f3f;
struct DoubleQueue
{
int l,r,q[MAXN];
DoubleQueue()
{
l = r = 0;
}
bool empty()
{
return l == r;
}
void push_back(int v)
{
q[r++] = v;
r %= MAXN;
}
void push_front(int v)
{
l = (l - 1 + MAXN) % MAXN;
q[l] = v;
}
int front()
{
return q[l];
}
void pop_front()
{
l++;
l %= MAXN;
}
void pop_back()
{
r = (r - 1 + MAXN) % MAXN;
}
};
struct Edge
{
int to,next,cap,flow,cost;
}edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;
void init(int n)
{
N = n;
tol = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)
{
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = 0;
edge[tol].cost = -cost;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
bool spfa(int s,int t)
{
DoubleQueue q;
for(int i = 0; i < N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push_back(s);
while(!q.empty())
{
int u = q.front();
q.pop_front();
vis[u] = false;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost)
{
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
if(!q.empty() && dis[v] <= dis[q.front()])
q.push_front(v);
else q.push_back(v);
}
}
}
}
if(pre[t] == -1) return false;
return true;
}
int Minflow(int s,int t)
{
int cost = 0;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; ~i; i = pre[edge[i ^ 1].to])
{
if(Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
}
for(int i = pre[t]; ~i; i = pre[edge[i ^ 1].to])
{
edge[i].flow += Min;
edge[i ^ 1].flow -= Min;
cost += edge[i].cost * Min;
}
}
return cost;
}
char s[105][105];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while(~scanf("%d %d",&n,&m) && (n | m))
{
init(n * m + 2);
int ss = n * m,tt = ss + 1;
for(int i = 0; i < n; i++)
{
scanf("%s",s[i]);
for(int j = 0; j < m; j++)
{
if(s[i][j] == 'm')
addedge(ss,i * m + j,1,0);
else if(s[i][j] == 'H')
addedge(i * m + j,tt,1,0);
if(j + 1 < m)
{
addedge(i * m + j,i * m + j + 1,INF,1);
addedge(i * m + j + 1,i * m + j,INF,1);
}
if(i + 1 < n)
{
addedge(i * m + j,(i + 1) * m + j,INF,1);
addedge((i + 1) * m + j,i * m + j,INF,1);
}
}
}
printf("%d\n",Minflow(ss,tt));
}
return 0;
}