随着人工智能和深度学习技术的迅猛发展,智慧医疗的应用范围在不断扩展,尤其在口腔健康领域展现了巨大的潜力。口腔疾病的早期诊断和精确治疗对患者的预后至关重要,而传统的手动分析口腔牙齿CT影像不仅费时费力,而且容易受主观因素影响,导致诊断误差。为了应对这一挑战,基于深度学习的自动化检测技术逐渐成为研究热点。本研究提出了一种创新的基于YOLOv8深度学习模型的口腔牙齿CT影像检测系统,旨在通过智能化手段自动检测和分类口腔中常见的病症,包括阻生牙、龋齿、根管治疗、修复体、牙体修复及残根等。
该系统采用了YOLOv8(You Only Look Once v8)模型,这是一种实时对象检测的先进模型,具有极高的检测精度和速度。YOLOv8模型以其在复杂场景中的优异表现而广受关注,尤其在需要高效且准确的图像分析任务中显示出卓越的能力。为了确保系统能够有效地处理和分析大量的口腔牙齿CT图像,本研究使用了经过标注的高质量数据集进行模型的训练与优化。通过精心设计的训练代码和数据处理流程,系统能够快速识别并分类目标病症。
在用户交互方面,系统采用了PyQt5作为图形用户界面(GUI),为用户提供直观且易操作的界面,极大地简化了操作流程。PyQt5作为Python的高级GUI库,支持跨平台开发,具有强大的界面设计功能,使得系统的操作更具灵活性和用户友好性。用户可以通过该界面直接加载CT影像,系统则会自动分析并展示检测结果,提供精确的病灶定位和分类建议。
为了评估系统的性能,本研究通过大量实验验证了其在口腔牙齿CT影像数据集上的表现。实验结果表明,系统在测试集上达到了较高的检测精度和稳健性,尤其是在复杂的口腔结构中,仍能准确识别各类病症。阻生牙和龋齿的检测准确率显著提升,根管治疗和修复体的定位也更加精确。此外,系统在处理残根等复杂的牙齿病变时,能够提供明确的手术建议,为临床治疗提供了重要的参考依据。
该系统在智慧医疗的实际应用中,能够为牙医提供强有力的辅助工具,帮助其快速、准确地完成诊断任务,减少人工干预带来的误差。同时,系统通过对大量口腔影像的自动化处理,能够有效缩短诊断时间,提高工作效率。这不仅能够减轻医生的工作负担,还能提升患者的就医体验,降低口腔疾病的误诊率,显著改善患者的治疗效果。
此外,该系统的广泛应用也为智慧医疗在口腔医学中的进一步发展奠定了基础。未来,随着更多数据的积累和算法的进一步优化,该系统有望扩展到更广泛的口腔疾病检测领域,甚至可以应用于其他医疗影像的自动化分析中。通过不断迭代和改进,基于YOLOv8的智慧医疗系统将能够为医疗行业带来更大的变革,推动口腔医学进入更加智能化的新时代。
算法流程
仅对train.py部分代码简要讲解。该项目可以按需有偿讲解,提供后续答疑。
项目数据
通过搜集关于数据集为各种各样的口腔牙齿CT影像相关图像,并使用Labelimg标注工具对每张图片进行标注,分6检测类别,分别是’阻生牙’,’龋齿’,’根管治疗’,’修复体’,’牙体修复’,’残根’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_c