基于YOLOv8深度学习的智慧社区建筑外墙破损(裂缝、露筋、剥落)检测系统研究与实现(PyQt5界面+数据集+训练代码)

随着智慧社区的发展,对建筑结构健康状况的实时监测变得愈发重要。在此背景下,建筑外墙破损(如裂缝、露筋和剥落)等问题对建筑物整体结构的安全性和耐久性构成了严重威胁,及时、准确地检测这些问题变得尤为关键。传统的人工检测方法通常耗时、费力,且检测结果易受人为因素影响。为了解决这些问题,本文提出了一种基于YOLOv8深度学习模型的建筑外墙破损检测系统,以实现更高效、自动化的检测流程。

该系统通过PyQt5界面实现用户友好的操作体验。用户可以轻松地上传包含外墙破损的图片,或者接入实时视频流,以实时检测和识别外墙损伤。具体来说,系统可以识别常见的外墙破损类型,包括裂缝、露筋和剥落等。界面设计简单直观,能够清晰展示检测结果并高亮标记损伤区域,以便用户快速获取相关信息并作出相应维护决策。

在系统开发过程中,首先进行了数据采集与标注,以构建高质量的数据集。然后,利用标注数据对YOLOv8模型进行训练。该模型在检测建筑外墙破损方面具有较高的准确性和快速的响应时间。在训练完成后,本文进一步结合PyQt5框架设计了用户操作界面,实现了图像上传、实时检测和结果展示等功能。此外,系统还具备较强的扩展性,可以根据需要调整模型参数或更新数据集,以满足不同应用场景的需求。

实验结果表明,该系统在检测精度和实时性方面均表现出色。相较于传统方法,基于深度学习的检测系统不仅在复杂环境中保持高效运行,而且能够显著降低人工成本和操作难度。因此,该系统可用于智慧社区中的建筑外墙自动化监测,提高了维护效率,且为社区管理者提供了一个可靠、低成本的建筑健康监测工具。未来的研究方向包括进一步优化检测模型的性能,以及探索基于云端部署的远程监测方案,以更好地适应大规模智慧社区的应用需求。

算法流程

项目数据

通过搜集关于数据集为各种各样的建筑外墙破损相关图像,并使用Labelimg标注工具对每张图片进行标注,分3检测类别,分别是’裸露钢筋’,’外墙剥落’,’墙体裂缝’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、heig

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值