本研究设计并实现了一种基于多特征融合与机器学习算法的故障诊断系统。系统集成了频率域特征、MFCC特征和时域特征的提取方法,并通过KNN、SVM和BP神经网络模型对信号进行分类处理。通过对信号进行预处理、异常值去除和特征融合,系统能够有效提升故障诊断的准确性和鲁棒性。实验结果表明,该系统在多种故障场景随着糖尿病患者人数的逐年增加,血糖指标的准确预测在糖尿病管理中变得至关重要。本文提出了一种基于K-means聚类与BP神经网络相结合的血糖预测模型。首先,通过K-means聚类算法对血糖数据进行初步分组,并结合多个血糖相关特征,分析其对血糖水平的影响。接着,使用BP神经网络对各类数据进行训练和预测,实现对未来血糖水平的准确预测。实验结果表明,该方法能够有效提高血糖预测的准确性,具有较高的实用价值。
算法流程
运行效果
运行 Main_Test.m
图1: 训练集上实际值与预测值对比图
解析: 该图显示了在训练集上的实际血糖值与使用K-means聚类结合BP神经网络预测的血糖值的对比。图中的蓝色圆圈代表实际值,红色方块代表预测值。通过对比,可以直观地看出模型的预测效果。
图2: 训练集上血糖实际值与预测值的散点图