【数据可视化-44】2024福布斯全球2000强企业排行榜

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

一、引言

在2024年,福布斯发布了第22届全球2000强公司榜单。这份榜单反映了全球经济的现状及其变化,特别是随着标准普尔500指数创下历史新高,而中国和香港股市表现不佳的背景下,榜单更加美国中心化。本报告旨在通过数据可视化,深入探讨这一趋势以及其他有趣的数据点。

二、数据背景

  • 总览:2024年,榜单上的公司总销售额为51.7万亿美元,总利润为4.5万亿美元,总资产为23.8万亿美元,市值为8.8万亿美元,涵盖61个国家。
  • 领先公司:摩根大通连续两年位居榜首,市值为5500亿美元,资产总额为4万亿美元。伯克希尔·哈撒韦公司紧随其后,排名第2。
  • 新兴趋势:人工智能领域的影响逐渐显现,如英伟达市值达到3万亿美元,跃升至第110位。
  • 后疫情时代:疫苗制造商如辉瑞和莫德纳的排名大幅下滑。

三、数据说明

数据来源于kaggle,参考 Forbes The Global 2000 Largest Companies 2024

字段说明:

  • Rank 排名
  • Name 企业名称
  • Sales 销售额
  • Profit 利润
  • Assets 资产总额
  • Market Value 市值
  • Industry 所属行业
  • Founded 成立年份
  • Headquarters 总部所在地
  • Country 国家
  • CEO 首席执行官
  • Employees 员工数量

四、数据加载与探索

首先,我们从Kaggle平台上下载数据,并进行初步的处理。

import pandas as pd

# 加载数据
data_url = 'https://raw.githubusercontent.com/mohammadgharaei77/datasets/main/largest-2000-global-companies.csv'
df = pd.read_csv(data_url)

# 预览数据
print(df.head())

五、数据可视化分析报告

5.1 各国2000强企业的数量top15

我们首先计算上榜公司的国家分布。

# 计算各国上榜公司数量
country_counts = df['Country'].value_counts()

# 可视化
plt.figure(figsize=(10, 6))
sns.barplot(x=country_counts.index.tolist()[:15], y=country_counts.tolist()[:15], palette='viridis')
plt.title('Global 2000 Companies by Country top15\n--公众号:NLP随手记  CSDN:云天徽上--')
plt.xlabel('Country')
plt.ylabel('Number of Companies')
plt.xticks(rotation=30)
plt.show()


从图中可以看出美国2000强企业数量遥遥领先于其它国家,第二多的是中国。

5.2 销售额、利润、资产和市值分析

我们使用堆叠柱状图或箱线图来展示这些关键财务指标。

# 按行业汇总销售额、利润、资产和市值
industry_summary = df.groupby('Industry')[['Sales', 'Profit', 'Assets', 'Market Value']].sum()

# 设置x轴标签为行业,y轴为四个财务指标
x_data = industry_summary.index.tolist()
sales_data = industry_summary['Sales'].tolist()
profit_data = industry_summary['Profit'].tolist()
assets_data = industry_summary['Assets'].tolist()
market_value_data = industry_summary['Market Value'].tolist()

# 创建堆叠柱状图
bar = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))  # 使用明亮的主题
    .add_xaxis(x_data)
    .add_yaxis('销售额', sales_data, stack='stack1', color='blue', label_opts=opts.LabelOpts(is_show=False))
    .add_yaxis('利润', profit_data, stack='stack1', color='green', label_opts=opts.LabelOpts(is_show=False))
    .add_yaxis('资产', assets_data, stack='stack1', color='orange', label_opts=opts.LabelOpts(is_show=False))
    .add_yaxis('市值', market_value_data, stack='stack1', color='red', label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title='各行业的销售额、利润、资产与市值分布',
                                  subtitle="""--公众号:NLP随手记  CSDN:云天徽上--""",
                                  pos_left="center"),
        xaxis_opts=opts.AxisOpts(name='行业', axislabel_opts=opts.LabelOpts(rotate=45)),
        yaxis_opts=opts.AxisOpts(name='金额(单位:亿美元)'),
        datazoom_opts=opts.DataZoomOpts(),  # 添加滑动条功能
        legend_opts=opts.LegendOpts(pos_top='10%', pos_left='center'),
        # toolbox_opts=opts.ToolboxOpts(is_show=True)  # 启用工具箱
    )
)

bar.render_notebook()
bar.render("按行业汇总销售额、利润、资产和市值.html")


请你读者自行补充图像结论;

5.3 按行业分布的平均市值

# 按行业分布的平均市值
industry_market_value =  df.groupby('Industry')['Market Value'].mean().sort_values(ascending=True)

bar = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='600px'))
            .add_xaxis(industry_market_value.index.tolist())
            .add_yaxis("", industry_market_value.values.tolist())
            .set_series_opts(label_opts=opts.LabelOpts(is_show=False),
                             )

            .set_global_opts(
                title_opts=opts.TitleOpts(title="按行业分布的平均市值",
                                         subtitle="""--公众号:NLP随手记  CSDN:云天徽上--""",
                                          pos_left="center"),
                xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)),  #
                legend_opts=opts.LegendOpts(is_show=True),
                visualmap_opts=opts.VisualMapOpts(
                    is_show=False,
                    pos_top='60%',
                    pos_left='40%',
                    range_color=["green", "yellow", "red", "pink", "orange", "purple"]
            )
            )
            .reversal_axis()
            
        )
bar.render_notebook()


请你读者自行补充图像结论;

5.4 各个行业2000强企业数量

industry_count = df['Industry'].value_counts()

bar = (
    Bar()
    .add_xaxis(industry_count.index.tolist())  # X轴:行业名称
    .add_yaxis('', industry_count.values.tolist())  # Y轴:企业数量
    .set_global_opts(
        title_opts=opts.TitleOpts(title="各个行业的企业数量",
                                  subtitle="""--公众号:NLP随手记  CSDN:云天徽上--""",
                                  pos_left="center"),  # 图表标题
        xaxis_opts=opts.AxisOpts(
            name="行业", 
            axislabel_opts=opts.LabelOpts(rotate=55)  # 设置X轴标签旋转角度
        ),  
        yaxis_opts=opts.AxisOpts(name="企业数量"),  # Y轴设置
        datazoom_opts=opts.DataZoomOpts(),  # 添加可滑动功能
    )
)

bar.render_notebook()


请你读者自行补充图像结论;

5.5 各国2000强企业总销售额情况分析

temp = df.groupby('Country')['Sales'].sum().reset_index()
temp.columns = ['品种','数量']

pie = (
    Pie(
        init_opts=opts.InitOpts(width='1000px', height='800px')
    )
    .add(series_name="",
            data_pair=[list(z) for z in zip(temp['品种'], temp['数量'])],
            radius=["30%",'50%'],
            center=["38%", "50%"],
            label_opts=opts.LabelOpts(is_show=False, position="center"),
            )
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="各国2000强企业总销售额占比情况",
            subtitle="""--公众号:NLP随手记  CSDN:云天徽上--""",
            pos_top='2%',
            pos_left="center",
            title_textstyle_opts=opts.TextStyleOpts(color='#228be6',font_size=20)
        ),
        visualmap_opts=opts.VisualMapOpts(
            is_show=False,
            max_=600,
            pos_top='70%',
            pos_left='20%',
            range_color=['blue', 'green', 'yellow', 'red']
        ),
        legend_opts=opts.LegendOpts(is_show=True, pos_right="-5%", pos_top="8%",orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
)
pie.render_notebook()
pie.render("pie_set_color.html")


从图中可以看出2024美国福布斯前2000强企业中总销售额第一,占比为36.22%;

结论

通过对福布斯全球2000强公司的数据进行了简单的可视化分析,我们发现榜单更加美国中心化。福布斯全球2000强公司中美国在各个方面都处于遥遥领先的地位;后面我们可以重点分析热们行业人工智能类企业的排行情况,后疫情时代疫苗制造商排名的情况等。从该数据中挖掘出更多的有限信息,更好的帮助人们理解全球经济的变化趋势,还为投资者和企业提供了有价值的参考信息。

**注:**博主目前收集了6900+份相关数据集,有想要的可以领取部分数据:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云天徽上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值