🧑 博主简介:曾任某智慧城市类企业
算法总监
,目前在美国市场的物流公司从事高级算法工程师
一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907
)
💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。
【数据可视化-44】2024福布斯全球2000强企业排行榜
一、引言
在2024年,福布斯发布了第22届全球2000强公司榜单。这份榜单反映了全球经济的现状及其变化,特别是随着标准普尔500指数创下历史新高,而中国和香港股市表现不佳的背景下,榜单更加美国中心化。本报告旨在通过数据可视化,深入探讨这一趋势以及其他有趣的数据点。
二、数据背景
- 总览:2024年,榜单上的公司总销售额为51.7万亿美元,总利润为4.5万亿美元,总资产为23.8万亿美元,市值为8.8万亿美元,涵盖61个国家。
- 领先公司:摩根大通连续两年位居榜首,市值为5500亿美元,资产总额为4万亿美元。伯克希尔·哈撒韦公司紧随其后,排名第2。
- 新兴趋势:人工智能领域的影响逐渐显现,如英伟达市值达到3万亿美元,跃升至第110位。
- 后疫情时代:疫苗制造商如辉瑞和莫德纳的排名大幅下滑。
三、数据说明
数据来源于kaggle,参考 Forbes The Global 2000 Largest Companies 2024
字段说明:
- Rank 排名
- Name 企业名称
- Sales 销售额
- Profit 利润
- Assets 资产总额
- Market Value 市值
- Industry 所属行业
- Founded 成立年份
- Headquarters 总部所在地
- Country 国家
- CEO 首席执行官
- Employees 员工数量
四、数据加载与探索
首先,我们从Kaggle平台上下载数据,并进行初步的处理。
import pandas as pd
# 加载数据
data_url = 'https://raw.githubusercontent.com/mohammadgharaei77/datasets/main/largest-2000-global-companies.csv'
df = pd.read_csv(data_url)
# 预览数据
print(df.head())
五、数据可视化分析报告
5.1 各国2000强企业的数量top15
我们首先计算上榜公司的国家分布。
# 计算各国上榜公司数量
country_counts = df['Country'].value_counts()
# 可视化
plt.figure(figsize=(10, 6))
sns.barplot(x=country_counts.index.tolist()[:15], y=country_counts.tolist()[:15], palette='viridis')
plt.title('Global 2000 Companies by Country top15\n--公众号:NLP随手记 CSDN:云天徽上--')
plt.xlabel('Country')
plt.ylabel('Number of Companies')
plt.xticks(rotation=30)
plt.show()
从图中可以看出美国2000强企业数量遥遥领先于其它国家,第二多的是中国。
5.2 销售额、利润、资产和市值分析
我们使用堆叠柱状图或箱线图来展示这些关键财务指标。
# 按行业汇总销售额、利润、资产和市值
industry_summary = df.groupby('Industry')[['Sales', 'Profit', 'Assets', 'Market Value']].sum()
# 设置x轴标签为行业,y轴为四个财务指标
x_data = industry_summary.index.tolist()
sales_data = industry_summary['Sales'].tolist()
profit_data = industry_summary['Profit'].tolist()
assets_data = industry_summary['Assets'].tolist()
market_value_data = industry_summary['Market Value'].tolist()
# 创建堆叠柱状图
bar = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) # 使用明亮的主题
.add_xaxis(x_data)
.add_yaxis('销售额', sales_data, stack='stack1', color='blue', label_opts=opts.LabelOpts(is_show=False))
.add_yaxis('利润', profit_data, stack='stack1', color='green', label_opts=opts.LabelOpts(is_show=False))
.add_yaxis('资产', assets_data, stack='stack1', color='orange', label_opts=opts.LabelOpts(is_show=False))
.add_yaxis('市值', market_value_data, stack='stack1', color='red', label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title='各行业的销售额、利润、资产与市值分布',
subtitle="""--公众号:NLP随手记 CSDN:云天徽上--""",
pos_left="center"),
xaxis_opts=opts.AxisOpts(name='行业', axislabel_opts=opts.LabelOpts(rotate=45)),
yaxis_opts=opts.AxisOpts(name='金额(单位:亿美元)'),
datazoom_opts=opts.DataZoomOpts(), # 添加滑动条功能
legend_opts=opts.LegendOpts(pos_top='10%', pos_left='center'),
# toolbox_opts=opts.ToolboxOpts(is_show=True) # 启用工具箱
)
)
bar.render_notebook()
bar.render("按行业汇总销售额、利润、资产和市值.html")
请你读者自行补充图像结论;
5.3 按行业分布的平均市值
# 按行业分布的平均市值
industry_market_value = df.groupby('Industry')['Market Value'].mean().sort_values(ascending=True)
bar = (Bar(init_opts=opts.InitOpts(theme='dark',width='1000px', height='600px'))
.add_xaxis(industry_market_value.index.tolist())
.add_yaxis("", industry_market_value.values.tolist())
.set_series_opts(label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="按行业分布的平均市值",
subtitle="""--公众号:NLP随手记 CSDN:云天徽上--""",
pos_left="center"),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)), #
legend_opts=opts.LegendOpts(is_show=True),
visualmap_opts=opts.VisualMapOpts(
is_show=False,
pos_top='60%',
pos_left='40%',
range_color=["green", "yellow", "red", "pink", "orange", "purple"]
)
)
.reversal_axis()
)
bar.render_notebook()
请你读者自行补充图像结论;
5.4 各个行业2000强企业数量
industry_count = df['Industry'].value_counts()
bar = (
Bar()
.add_xaxis(industry_count.index.tolist()) # X轴:行业名称
.add_yaxis('', industry_count.values.tolist()) # Y轴:企业数量
.set_global_opts(
title_opts=opts.TitleOpts(title="各个行业的企业数量",
subtitle="""--公众号:NLP随手记 CSDN:云天徽上--""",
pos_left="center"), # 图表标题
xaxis_opts=opts.AxisOpts(
name="行业",
axislabel_opts=opts.LabelOpts(rotate=55) # 设置X轴标签旋转角度
),
yaxis_opts=opts.AxisOpts(name="企业数量"), # Y轴设置
datazoom_opts=opts.DataZoomOpts(), # 添加可滑动功能
)
)
bar.render_notebook()
请你读者自行补充图像结论;
5.5 各国2000强企业总销售额情况分析
temp = df.groupby('Country')['Sales'].sum().reset_index()
temp.columns = ['品种','数量']
pie = (
Pie(
init_opts=opts.InitOpts(width='1000px', height='800px')
)
.add(series_name="",
data_pair=[list(z) for z in zip(temp['品种'], temp['数量'])],
radius=["30%",'50%'],
center=["38%", "50%"],
label_opts=opts.LabelOpts(is_show=False, position="center"),
)
.set_global_opts(
title_opts=opts.TitleOpts(
title="各国2000强企业总销售额占比情况",
subtitle="""--公众号:NLP随手记 CSDN:云天徽上--""",
pos_top='2%',
pos_left="center",
title_textstyle_opts=opts.TextStyleOpts(color='#228be6',font_size=20)
),
visualmap_opts=opts.VisualMapOpts(
is_show=False,
max_=600,
pos_top='70%',
pos_left='20%',
range_color=['blue', 'green', 'yellow', 'red']
),
legend_opts=opts.LegendOpts(is_show=True, pos_right="-5%", pos_top="8%",orient="vertical"),
)
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
)
pie.render_notebook()
pie.render("pie_set_color.html")
从图中可以看出2024美国福布斯前2000强企业中总销售额第一,占比为36.22%;
结论
通过对福布斯全球2000强公司的数据进行了简单的可视化分析,我们发现榜单更加美国中心化。福布斯全球2000强公司中美国在各个方面都处于遥遥领先的地位;后面我们可以重点分析热们行业人工智能类企业的排行情况,后疫情时代疫苗制造商排名的情况等。从该数据中挖掘出更多的有限信息,更好的帮助人们理解全球经济的变化趋势,还为投资者和企业提供了有价值的参考信息。
**注:**博主目前收集了6900+份相关数据集,有想要的可以领取部分数据: