随着现代战争形态的不断演变,智慧战场的建设成为提升作战效能的重要手段之一。在复杂多变的战场环境中,如何准确识别敌我双方作战人员及平民目标,尤其是在迷彩掩护下,成为亟需解决的关键问题。本文提出了一种基于YOLOv8深度学习模型的智慧战场目标检测系统,旨在实现对“俄罗斯士兵”、“乌克兰士兵”及“非战斗人员”等多类别目标的高效识别与分类。
系统整体架构包括数据集构建、模型训练与优化、以及基于PyQt5的用户交互界面设计。首先,针对战场实际需求,构建了包含多种迷彩环境下敌我及平民目标的高质量数据集,并进行了数据增强处理以提升模型的泛化能力。随后,采用YOLOv8模型进行目标检测,并通过调整网络结构与参数优化,实现了在复杂背景下的高精度识别。为了方便用户操作,基于PyQt5开发了友好的图形用户界面,用户可以通过该界面进行图像输入、实时检测与结果展示。
实验结果表明,所提出的目标检测系统在多类别分类任务中表现优异,检测精度和召回率均达到较高水平,能够有效区分不同类别的作战人员与平民目标。此外,系统在处理速度和实时性方面也表现出色,满足战场实时监控的需求。本文所设计的目标检测系统为智慧战场中的敌我识别与平民保护提供了一种有效的技术手段,具有广泛的应用前景。
算法流程
Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。
项目数据
Tipps:通过搜集关于数据集为各种各样的迷彩作战人员及平民相关图像,并使用Labelimg标注工具对每张图片进行标注,分3检测类别,是’非作战人员’,’俄罗斯士兵’,’乌克兰士兵’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!
存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。
完成后可进行后续的yolo训练方面的操作。
硬件环境
我们使用的是两种硬件平台配置进行系统调试和训练:
(1