机器学习——K-近邻算法

本文介绍了K-近邻(K-NN)算法的基本概念,包括算法的三要素:距离度量、k值选择和分类决策规则。阐述了k-NN算法的步骤,以及在电影类型分类中的应用。k-NN算法具有理论简单、实现容易和准确性高等优点,但也存在k值选择敏感、易受异常值影响等缺点。
摘要由CSDN通过智能技术生成

(一)K-近邻算法概述

1. 𝑘 近邻法是基本且简单的分类与回归方法。 𝑘 近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 𝑘 个最近邻训练实例点,然后利用这 𝑘 个训练实例点的类的多数来预测输入实例点的类。

2. 𝑘 近邻模型对应于基于训练数据集对特征空间的一个划分。 𝑘 近邻法中,当训练集、距离度量、 𝑘 值及分类决策规则确定后,其结果唯一确定。

3. 𝑘 近邻法三要素:距离度量、 𝑘 值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。 𝑘 值小时, 𝑘 近邻模型更复杂; 𝑘 值大时, 𝑘 近邻模型更简单。 𝑘 值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的 𝑘 。

常用的分类决策规则是多数表决,对应于经验风险最小化。

4. 𝑘 近邻法的实现需要考虑如何快速搜索k个最近邻点,并用分类决策规则确定最终点的归类。


(二)算法步骤
k-近邻算法步骤如下:

计算已知类别数据集中的点与当前点之间的距离;
按照距离递增次序排序;
选取与当前点距离最小的k个点;
确定前k个点所在类别的出现频率;
返回前k个点所出现频率最高的类别作为当前点的预测分类。
        使用K-近邻算法分类爱情片和动作片,图1-1显示了6部

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值