- 博客(424)
- 资源 (21)
- 问答 (1)
- 收藏
- 关注
原创 wenet安装python报INTTYPES_FORMAT to either C99, BSD, or VC7 and try again
wenet安装python失败时的解决方案
2023-02-21 10:33:07
385
原创 wenet编译报Do not know how to define a 32-bit integer quantity on your system
wenet编译报错
2023-02-14 11:02:23
219
原创 语音识别之语音激活(VAD)检测(一)
VAD技术在语音领域中应用非常的广泛,在语音识别中我们可以对长语音通过VAD来检测出语音信号的空隙,通过这个空隙来分割语音,将长语音切分成短语音来进行语音识别。在电话通信中,为了减少存储数据所使用的空间,我们可以通过VAD技术将空隙的语音信号进行移除。函数,可以通过声音信号能量的强弱来判断是否有人说话,从而根据语音的空隙来分割音频,这对于一段长语音的音频做分割时非常重要的,通常ASR模型是无法一次处理过长的音频。
2022-12-12 22:14:51
1036
原创 Python实现对于给定的输入,保证和为 target 的不同组合数
给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。candidates 中的 同一个 数字可以 无限制重复被选取。如果至少一个数字的被选数量不同,则两种组合是不同的。对于给定的输入,保证和为 target 的不同组合数少于 150 个。下面对于这两种解决思路我们来使用代码进行实现。
2022-10-30 21:26:53
147
原创 paddle报ValueError: The type of data we are trying to retrieve does not match the type
记录paddlepaddle使用过程的数据类型的错误原因以及解决办法
2022-10-16 21:00:57
1018
2
原创 paddlepaddle模型训练和预测之高级API
本篇文章主要介绍了,如何使用paddle内置的高级API来快速简洁的构建模型,以FashionMNIST数据集为例
2022-09-20 20:54:02
469
原创 paddlepaddle十二生肖分类之模型(ResNet)构建(二)
这篇文章主要介绍了ResNet网络,以及如何使用PaddlePaddle来构建ResNet模型
2022-09-17 14:45:52
355
原创 基于特征点匹配的图像相似度算法之SIFT特征(一)
这篇文章主要介绍了如何来提取图片的SIFT特征点信息,如何利用SIFT特征信息来计算图片的相似度
2022-08-28 17:23:41
1974
原创 wandb不可缺少的机器学习分析工具
wandb是一款优秀的机器学习模型训练分析跟踪工具,通过它我们可以和简洁的分析出训练过程中指标和参数的变化情况,来更好的帮助我对模型进行调优,通过它还能够使得我们进行协同工作,分析我们的训练结果,帮助更好更方便的复现我们的模型...
2022-08-07 22:21:39
3417
4
原创 Python解析VOC数据标签文件
在目标检测数据集中我们经常会使用到VOC格式的数据,这篇文章就向大家介绍一下如何来解析,xml库提供了几种不同的方法来解析xml文件
2022-07-31 21:20:45
752
原创 paddle报ValueError: (InvalidArgument) Pass tensorrt_subgraph_pass has not been registered
在使用paddleOCR做TensorRT优化的时候报了下面的错误安装的paddlepaddle是否支持TensorRTpaddlepaddle-tensorRT:下载链接
2022-07-07 18:42:27
814
原创 图像处理中常用的相似度评估指标
有时候我们想要计算两张图片是否相似,而用来衡量两张图片相似度的算法也有很多,常用的有RMSE、PSNR、SSIM、UQI等
2022-06-04 17:47:45
7472
1
原创 scipy之傅里叶变换
本篇文章主要介绍了傅里叶变换,说明了什么是傅里叶变换?以及傅里叶变换的应用有哪些?并且通过scipy来详细介绍了,如何通过傅里叶变换来移除信号中的噪声。
2022-05-09 00:52:19
2193
原创 scipy之数据插值详解
有时候我们需要通过几个离散点的数据和标签,来预测其他没有数据值的离散点,这时候我们可以使用插值算法来实现,这篇文章主要介绍了数据的插值算法有哪些,并且通过scipy库详细的介绍了,如何来使用它实现数据插值
2022-05-03 11:23:21
2395
原创 开源的跨平台AI模型部署总有一款是你的菜
Mediapipe是Google开源的一个跨平台模型部署项目,Mediapipe还提供了大量的开源模型。我们能够很方便的使用MediaPipe将模型部署在Android、IOS、Desktop、Web以及IOT设备上。
2022-03-28 23:33:14
4997
1
原创 paddlepaddle实现十二生肖的分类之数据的预处理(一)
本文主要介绍使用十二生肖的数据集,利用paddlepaddle来封装数据加载器,以及图片的预处理
2022-03-01 22:22:20
743
原创 tensorflow ckpt模型转saved_model格式并进行模型预测
导读tensorflow的checkpoint模型文件,只包含了模型的参数并不包含模型结构,为了方便使用tensorflow的serving进行部署,我们需要将checkpoint模型转换为saved_model格式转换代码如下def ckpt_to_pb(ckpt_path,output_pd_path):"""ckpt_path:checkpoint模型文件的目录output_pd_path:savedmodel模型文件保存的目录""" #加载模型的参数文件 experiment
2022-02-25 16:53:22
2087
1
原创 windows使用opencc中文简体和繁体互转
OpenCC git项目地址一、OpenCC介绍OpenCC是一款开源的中文处理工具,支持字符级别的转换,可以在中文简体和繁体以及香港、台湾之间相互转换。git上提供了在Debian、Ubuntu、Fedora、Arch Linux、Mac OS以及Node.js的安装方法,并没有提供在windows上面的安装。这篇文章主要介绍如何在Windows上安装和使用OpenCC。二、在Win...
2022-02-22 22:06:16
14419
16
原创 使用PDB在Notebook对python代码进行调试
导读当我们使用编译器来开发python项目的时候,可以利用编译器的自带的调试功能来对python的脚本进行调试。其实,在python3.7以后自带了一个调试器PDB,可以很方便的帮助我们对python的代码进行调试,这篇文章就让我们来看看如何使用PDB进行调试吧
2022-02-20 22:39:27
831
原创 使用paddlepaddle进行手写数字识别
导读MNIST手写数字数据集作为深度学习入门的数据集是我们经常都会使用到的,包含了0~9共10个数字类别的图片,每张图片的大小为28X28,一共包含了60000张训练集图片和10000张测试集图片。使用PaddlePadlle进行手写数字识别导包import paddlefrom paddle.vision.transforms import Normalize加载MNIST数据集#数据的归一化处理transform = Normalize(mean=[127.5],std=[12
2022-02-09 23:35:24
2425
1
原创 python使用selenium打开chrome浏览器时带用户登录信息
导读我们在使用selenium打开google浏览器的时候,默认打开的是一个新的浏览器窗口,而且里面不带有任何的浏览器缓存信息。当,我们想要爬取某个网站信息或者做某些操作的时候就需要自己再去模拟登陆
2022-02-07 21:45:49
4921
1
原创 pip install dlib报C++11 is required to use dlib
错误原因在使用pip install dlib安装dlib的时候报错,错误的详细信息如下ERROR: Command errored out with exit status 1:command: /root/miniconda3/envs/cv_1/bin/python -u -c ‘import sys, setuptools, tokenize; sys.argv[0] = ‘"’"’/tmp/pip-install-jpjqw_8i/dlib_a6680215d7d4421581b7b499
2022-01-29 11:42:53
3411
原创 opencv常用的形态学操作
导读在使用opencv做图像处理的时候,我们经常会需要用到一些基础的图像形态学操作腐蚀、膨胀。通过这些基本的形态学操作我们可以实现去噪以及图像的切割等。形态学变换是基于图像形状的基础变换,它只能在二值图像上做处理。形态学操作需要两个输入,输入图像和structuring element或kernel,structuring element和kernel决定我们做何种形态学处理的操作。腐蚀和膨胀是形态学处理的基础操作,而开运算和闭运算是基于腐蚀和膨胀的变种操作。下面我们就介绍一下如何在实际中应用这些操作
2021-12-07 22:37:09
5200
5
原创 imgwarp.cpp:3143: error: (-215:Assertion failed) _src.total() > 0 in function ‘warpPerspective‘
错误缘由在使用opencv做透视变换的时候报error: (-215:Assertion failed) _src.total() > 0 in function 'warpPerspective',错误的详细信息如下cv2.error: OpenCV(4.4.0) /tmp/pip-req-build-dglzv4yn/opencv/modules/imgproc/src/imgwarp.cpp:3143: error: (-215:Assertion failed) _src.total()
2021-12-01 23:00:43
4432
原创 python关闭print的输出信息
import sysprint("1111111")#关闭print的输出sys.stdout = open(os.devnull, 'w')print("2222222")#打开print的输出sys.stdout = sys.__stdout__print("3333333")
2021-11-30 15:51:59
6198
原创 windows bat启动程序和监控程序自启动
导读我们需要监控某个服务进程是否启动,如果服务奔溃了就自动重启,这里以redis为例介绍一下如何在windows上写这种bat文件,来监控服务的状态监控服务的运行状态脚本启动redisredis.bat文件的内容如下@echo offrem 隐藏redis启动后的cmd窗口if "%1" == "h" goto beginmshta vbscript:createobject("wscript.shell").run("%~nx0 h",0)(window.close)&&
2021-11-30 15:41:51
2965
原创 python获取mq队列数据报Queue.declare: (406) PRECONDITION_FAILED - inequivalent arg ‘x-max-priority‘
缘由使用kombu读取队列数据的时候报如下错误amqp.exceptions.PreconditionFailed: Queue.declare: (406) PRECONDITION_FAILED - inequivalent arg ‘x-max-priority’ for queue ‘douyin.pg.logo.ready’ in vhost ‘douyin_pggolden’: received none but current is the value ‘5’ of type ‘sign
2021-11-26 17:27:06
1834
原创 python OpenCV给视频去除水印
导读import cv2# 创建读取视频的类capture = cv2.VideoCapture("mapping.mp4")# 得到视频的高度height = capture.get(cv2.CAP_PROP_FRAME_HEIGHT)# 得到视频的宽度width = capture.get(cv2.CAP_PROP_FRAME_WIDTH)# 得到视频的帧数count = capture.get(cv2.CAP_PROP_FRAME_COUNT)# 得到视频的帧速fps = cap
2021-11-26 14:59:34
5612
原创 node上传文件到FTP服务器报Error: Timed out while making data connection
错误原因在局域网内搭建了一个FTP服务器,因为项目使用node-ftp封装的一个FTP文件上传和下载服务,在上传文件的时候报如下错误:(node:29020) UnhandledPromiseRejectionWarning: Error: Timed out while making data connectionat Timeout. (D:\git project\nexrender\packages\nexrender-provider-ftp\node_modules\ftp\lib\co
2021-11-19 11:17:54
1419
原创 loss乘以100等价于learning rate乘以100?
导读看到这个问题的时候,可能你会很直观的认为是等价的,其实等不等价这个应该取决于在更新参数时所选择的优化算法。因为无论是缩放loss还是learning rate最终的影响都是对更新参数时偏移量(Δ\DeltaΔ)的影响,而不同的优化算法会导致这个偏移量存在差别,下面我们来讨论一下不同优化算法之间的差别。SGD梯度下降优化算法,也是最常见的一种优化算法,公式如下:θ=θ−η∗ΔθJ(θ)\theta = \theta - \eta * \Delta_{\theta}J(\theta)θ=θ−η
2021-10-24 22:45:30
2868
机器学习常用数据集(iris、wine、abalone)
2018-06-06
imaging.jar
2017-04-02
zxing cpp lib
2017-03-05
ListView中因layout_height是wrap_content而引发的问题
2018-06-04
TA创建的收藏夹 TA关注的收藏夹
TA关注的人