在STM32上实现Keras中的LSTM网络

本文介绍如何在STM32微控制器上实现Keras中的LSTM网络。通过在keras环境中训练参数,不使用LSTM的bias,然后导出权重到STM32。在STM32上,利用arm_math库的矩阵乘法运算,根据LSTM门的顺序进行计算,成功复现了Keras中的LSTM网络运算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先在keras环境中训练参数,得到lstm的权重和偏置(此处推荐不选择使用LSTM的bias选项,这样可以在剪枝等操作时更好地对比变化后的影响)

①查看keras的LSTM计算过程

self.kernel_i = self.kernel[:, :self.units]
        self.kernel_f = self.kernel[:, self.units: self.units * 2]
        self.kernel_c = self.kernel[:, self.units * 2: self.units * 3]
        self.kernel_o = self.kernel[:, self.units * 3:]

        self.recurrent_kernel_i = self.recurrent_kernel[:, :self.units]
        self.recurrent_kernel_f = self.recurrent_kernel[:, self.units: self.units * 2]
        self.recurrent_kernel_c = self.recurrent_kernel[:, self.units * 2: self.units * 3]
        self.recurrent_kernel_o = self.recurrent_kernel[:, self.units * 3:]

        if self.use_bias:
            self.bias_i = self.bias[:self.units]
            self.bias_f = self.bias[self.units: self.units * 2]
            self.bias_c = self.bias[self.units * 2: self.units * 3]
            self.bias_o = self.b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值