图象处理常用特效算法

1、图像的逆反处理算法如下:

       设r,g,b分别为源图像像素f(i,j)的红,绿,蓝分量值,rr,gg,bb分别为处理后像素g(i,j)的红,绿,蓝分量值。

       则 rr=255-r                       gg=255-g                               bb=255-b

2、图像的平滑处理算法如下:

        平滑处理是指将源图像的每一个像素的颜色值由其相邻n*n个像素的平均值来代替。

        例如: 对于3*3点阵而言,设原图像某像素的值为f(i,j),平滑处理后该像素的值为g(i,j),

                  则: g(i,j)=(f(i,j)+f(i-1,j)+f(i+1,j)+f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)+ f(i-1,j+1)+f(i,j+1)+f(i+1,j+1))/9

        注意:该算法不能平滑图像边界的像素。

3、图象的霓虹处理算法:

        对于3*3点阵,首先计算原图象像素f(i,j)的红,绿,蓝分量与相同行f(i+1,j)及同列f(i,j+1)相邻象素的梯度,即差的平方之和的平方根,然后将梯度值作为处理后的象素g(i,j)的红,绿,蓝分量值。

       设r1,g1,b1分别为原图象象素f(i,j)的红,绿,蓝分量值,r2,g2,b2分别为相同行相邻象素f(i+1,j)的红,绿,蓝分量值,r3,g3,b3分别为同列相邻象素f(i,j+1)的红,绿,蓝分量值,rr,gg,bb为处理后象素g(i,j)的红,绿,蓝分值,     则:

                        rr1=(r1-r2)^2                                                                    rr2=(r1-r3)^2

                       gg1=(g1-g2)^2                                                                gg2=(g1-g3)^2

                       bb1=(b1-b2)^2                                                                bb2(b1-b3)^2 rr=2*(rr1+rr2)^0.5

                       gg=2*(gg1+gg2)^0.5                                                     bb=2*(bb1+bb2)^0.5

 4、图象的锐化处理的算法:

         计算原图像像素f(i,j)的像素值与该像素与相邻像素f(i-1,j-1)像素值之差的绝对值得百分比之和,作为处理后图像像素g(i,j)的像素值。例如,设r1,g1,b1分别为f(i,j)的红、绿、蓝分量值,r2,g2,b2分别为f(i-1,j-1)的红、绿、蓝分量值,rr,gg,bb分别为g(i,j)的红、绿、蓝分量值,则:

          rr=r1+0.25*abs(r1-r2)              

         gg=g1+0.25*abs(g1-g2)

         bb=b1+0.25*abs(b1-b2)

5、图像的浮雕处理算法:

        位图图像的浮雕处理的算法是:

        g(i,j)=f(i,j)-f(i-1,j)+常数 式中,

                      g(i,j)为处理后图像的像素值,         f(i,j)为原图像的像素值,               f(i-1,j)为前一个相邻像素的值。

        常数一般取128,即

                                rr=r1-r2+128                                g=g1-g2+128                                     bb=b1-b2+128

        上式中,

          r1,g1,b1分别为原图像的像素f(i,j)的红、绿、蓝分量值;

         r2,g2,b2分别为前一个相邻像素f(i-1,j)的红、绿、蓝分量值;

        rr,gg,bb,分别为处理后图像的像素g(i,j)的红、绿、蓝分量值.。

6、图像的镶嵌处理算法如下:

          镶嵌处理后的图像每一小矩阵内的所有像素值都取此矩阵内原图像各像素值之和的平均值。例如,对于3*3的子域:

          g(i,j)=(f(i,j)+f(i-1,j)+f(i+1,j)+f(i-1,j-1)+f(i+1,j-1)+f(i-1,j+1)+f(i,j+1)+f(i+1,j+1))/9

           则取: g(i-1,j)=g(i,j) g(i+1,j)=g(i,j) g(i,j-1)=g(i,j) g(i,j+1)=g(i,j) g(i,j+1)=g(i,j) g(i-1,j-1)=g(i,j) g(i-1,j+1)=g(i,j) g(i+1,j-1)=g(i,j) g(i+1,j+1)=g(i,j)

 7、图像的灰度处理

         彩色图像灰度处理的算法如下: c=tuxing.GetPixel(i,j) r=c.R g=c.G b=c.B rr=g(r 64)*64 gg=(g 64)*64 bb=(b 64)*64

8、图像缩小处理

        以坐标原点为中心,将图像个像素坐标的X分量和Y分量分别乘以Sx,Sy,则可使图像进行整体放大和缩小。这时, X'=X*Sx Y'=Y*Sy 当Sx=Sy时,作相似变换; 当Sx!=Sy时,产生变形。

9、图像的平移处理

       图像的平移变换是将图形上的点(x,y)在x方向(水平方向)和y方向(垂直方向)分别移动dx和dy,则变换后点(x',y')坐标值为:

                              x'=x+dx y'=y+dy

10、图像的旋转变换

        二维图像的旋转变换是以原点为中心,将点(x,y)旋转a角度而得到新的坐标(x',y')的变换称为旋转变换。其数学表达式为:

                            x'=x*cosa-y*sina y'=x*sina+y*cosa

11、二维图像的对称变换

          二维图像对称变换有以下几种情况.

         1、以x轴为对称得对称变换。

            以x轴为对称得点(x,y)的对称点(x',y')坐标为: x'=x y'=-y

        2、以y轴为对称得对称变换。

           以y轴为对称的点(x,y)的对称点(x',y')坐标为: x'=-x y'=y

       3、以原点为对称的对称变换。

           以原点为对称得点(x,y)的对称点(x',y')坐标为: x'=-x y'=-y 对图像的每一个像素依据二维图形几何变换公式进行计算后,在进行图像显示,则可得到图像的几何变换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值