题目描述
给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例 2:输入:root = [1] 输出:[[1]]
示例 3:输入:root = [] 输出:[]
提示:
树中节点数目在范围 [0, 2000] 内
-1000 <= Node.val <= 1000
解题思路
层序遍历(二叉树的宽度优先遍历)可以使用队列(FIFO)来实现。我们逐层遍历树中的节点,每次处理一层的所有节点,并将它们的子节点加入队列中。下面是实现层序遍历的步骤:
初始化队列:将根节点放入队列中。
遍历队列:每次从队列中取出当前层的所有节点,处理它们(即收集它们的值),并将它们的子节点(左子节点和右子节点)加入队列中。
重复步骤 2,直到队列为空。
返回结果:每层的节点值保存在一个列表中,最终返回所有层的节点值列表。
复杂度分析
时间复杂度
遍历所有节点:每个节点被访问一次,处理其值并将其子节点添加到队列中。
时间复杂度:O(N),其中 NNN 是树中节点的总数。
空间复杂度
队列的最大空间:队列中最多会存储树的最宽层的所有节点。如果树是完全二叉树,队列的最大空间复杂度是 O(W),其中 WWW 是树的最大宽度。在完全二叉树中,宽度 WWW 最多为 N/2N/2N/2,因此空间复杂度为 O(N)。
额外空间:用于存储每层的节点值的列表,最坏情况下也是 O(N)。
代码实现
package org.zyf.javabasic.letcode.hot100.tree;
import org.zyf.javabasic.letcode.tree.base.TreeNode;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
/**
* @program: zyfboot-javabasic
* @description: 二叉树的层序遍历(中等)
* @author: zhangyanfeng
* @create: 2024-08-22 11:28
**/
public class LevelOrderSolution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int levelSize = queue.size();
List<Integer> levelNodes = new ArrayList<>();
for (int i = 0; i < levelSize; i++) {
TreeNode node = queue.poll();
levelNodes.add(node.val);
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
result.add(levelNodes);
}
return result;
}
public static void main(String[] args) {
// 创建一个示例二叉树
TreeNode root = new TreeNode(3);
root.left = new TreeNode(9);
root.right = new TreeNode(20);
root.right.left = new TreeNode(15);
root.right.right = new TreeNode(7);
LevelOrderSolution solution = new LevelOrderSolution();
List<List<Integer>> result = solution.levelOrder(root);
// 打印结果
System.out.println(result);
}
}
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/xiaofeng10330111/article/details/141401712