Spark大数据处理讲课笔记3.5 RDD持久化机制

零、本讲学习目标

  1. 理解RDD持久化的必要性
  2. 了解RDD的存储级别
  3. 学会如何查看RDD缓存

一、RDD持久化

(一)引入持久化的必要性

  • Spark中的RDD是懒加载的,只有当遇到行动算子时才会从头计算所有RDD,而且当同一个RDD被多次使用时,每次都需要重新计算一遍,这样会严重增加消耗。为了避免重复计算同一个RDD,可以将RDD进行持久化。
  • Spark中重要的功能之一是可以将某个RDD中的数据保存到内存或者磁盘中,每次需要对这个RDD进行算子操作时,可以直接从内存或磁盘中取出该RDD的持久化数据,而不需要从头计算才能得到这个RDD。

(二)案例演示持久化操作

1、RDD的依赖关系图

  • 读取文件,进行一系列操作,有多个RDD,如下图所示。

2、不采用持久化操作

  • 在上图中,对RDD3进行了两次算子操作,分别生成了RDD4和RDD5。若RDD3没有持久化保存,则每次对RDD3进行操作时都需要从textFile()开始计算,将文件数据转化为RDD1,再转化为RDD2,最终才得到RDD3。

  • 查看要操作的HDFS文件

  • 以集群模式启动Spark Shell 

  •  按照图示进行操作,得RDD4和RDD5

  •  查看RDD4内容,会从RDD1到RDD2到RDD3到RDD4跑一趟

显示RDD5内容,也会从RDD1到RDD2到RDD3到RDD5跑一趟 

3、采用持久化操作

  • 可以在RDD上使用persist()或cache()方法来标记要持久化的RDD(cache()方法实际上底层调用的是persist()方法)。在第一次行动操作时将对数据进行计算,并缓存在节点的内存中。Spark的缓存是容错的:如果缓存的RDD的任何分区丢失,Spark就会按照该RDD原来的转换过程自动重新计算并缓存。
  • 计算到RDD3时,标记持久化

 

计算RDD4,就是基于RDD3缓存的数据开始计算,不用从头到尾跑一趟 

计算RDD5,就是基于RDD3缓存的数据开始计算,不用从头到尾跑一趟 

 二、存储级别
(一)持久化方法的参数

  • 利用RDD的persist()方法实现持久化,向persist()方法中传入一个StorageLevel对象指定存储级别。每个持久化的RDD都可以使用不同的存储级别存储,默认的存储级别是StorageLevel.MEMORY_ONLY。

(二)Spark RDD存储级别表

  • Spark RDD有七种存储级别

(三)如何选择存储级别

  • 选择原则:权衡内存使用率和CPU效率
  • 如果RDD存储在内存中不会发生溢出,那么优先使用默认存储级别(MEMORY_ONLY),该级别会最大程度发挥CPU的性能,使在RDD上的操作以最快的速度运行。
  • 如果RDD存储在内存中会发生溢出,那么使用MEMORY_ONLY_SER并选择一个快速序列化库将对象序列化,以节省空间,访问速度仍然相当快。
  • 除非计算RDD的代价非常大,或者该RDD过滤了大量数据,否则不要将溢出的数据写入磁盘,因为重新计算分区的速度可能与从磁盘读取分区一样快。
  • 如果希望在服务器出故障时能够快速恢复,那么可以使用多副本存储级别MEMORY_ONLY_2或MEMORY_AND_DISK_2。该存储级别在数据丢失后允许在RDD上继续运行任务,而不必等待重新计算丢失的分区。其他存储级别在发生数据丢失后,需要重新计算丢失的分区。

(四)persist()与cache()的关系

  • 查看两个方法的源码
/**                                                                                           
 * 在第一次行动操作时持久化RDD,并设置存储级别,当RDD从来没有设置过存储级别时才能使用该方法                                           
 */                                                                                          
def persist(newLevel: StorageLevel): this.type = {                                            
  if (isLocallyCheckpointed) {                                                                
    // 如果之前已将该RDD设置为localCheckpoint,就覆盖之前的存储级别                                                
    persist(LocalRDDCheckpointData.transformStorageLevel(newLevel), allowOverride = true)     
  } else {                                                                                    
    persist(newLevel, allowOverride = false)                                                  
  }                                                                                           
}                                                                                             
/**                                                                                           
  * 持久化RDD,使用默认存储级别(MEMORY_ONLY)                                                              
  */                                                                                          
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)                                  
                                                                                              
/**                                                                                           
  * 持久化RDD,使用默认存储级别(MEMORY_ONLY)                                                              
  */                                                                                          
def cache(): this.type = persist()                                                            
  • 从上述代码可以看出,cache()方法调用了无参的persist()方法,两者的默认存储级别都为MEMORY_ONLY,但cache()方法不可更改存储级别,而persist()方法可以通过参数自定义存储级别

(五)案例演示设置存储级别

  • net.huawei.rdd根包里创建day05子包,然后在子包里创建SetStorageLevel对象

 

package net.zyf.rdd.day05
import org.apache.log4j.{Level, Logger}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext}

/**
 * 功能:
 * 作者:zyf
 * 时间:2023年03月00号
 */



object SetStorageLevel {
  def main(args: Array[String]): Unit = {
    // 创建Spark配置对象
    val conf = new SparkConf()
      .setAppName("SetStorageLevel") // 设置应用名称
      .setMaster("local[*]") // 设置主节点位置(本地调试)
    // 基于Spark配置对象创建Spark容器
    val sc = new SparkContext(conf)

    // 去除Spark运行信息
    Logger.getLogger("org").setLevel(Level.OFF)
    Logger.getLogger("com").setLevel(Level.OFF)
    System.setProperty("spark.ui.showConsoleProgress", "false")
    Logger.getRootLogger().setLevel(Level.OFF)

    // 读取HDFS文件,得到rdd
    val rdd = sc.textFile("hdfs://master:9000/park/words.txt")
    // 将rdd标记为持久化,采用默认存储级别 - StorageLevel.MEMORY_ONLY
    rdd.persist() // 无参持久化方法

    // 对rdd做扁平化映射,得到rdd1
    val rdd1 = rdd.flatMap(_.split(" "))
    // 将rdd1持久化到磁盘
    rdd1.persist(StorageLevel.DISK_ONLY)

    // 将rdd1映射成二元组,得到rdd2
    val rdd2 = rdd1.map((_, 1))
    // 将rdd2持久化到内存,溢出的数据持久化到磁盘
    rdd2.persist(StorageLevel.MEMORY_AND_DISK)

    // 第一次行动算子,对标记为持久化的RDD进行不同级别的持久化操作
    println("元素个数:" + rdd2.count)

    // 第二次行动算子,直接利用rdd2的持久化数据进行操作,无须从头进行计算
    rdd2.collect.foreach(println)
  }
}

运行程序,查看结果

 

三、利用Spark WebUI查看缓存

  • 最好重启Spark Shell

(一)创建RDD并标记为持久化

  • 执行命令:val rdd = sc.parallelize(List(56, 67, 32, 89, 90, 66, 100))

 

(二)Spark WebUI查看RDD存储信息

  • 浏览器中访问Spark Shell的WebUI http://master:4040/storage/查看RDD存储信息,可以看到存储信息为空

执行命令:rdd.collect,收集RDD数据

刷新WebUI,发现出现了一个ParallelCollectionRDD的存储信息,该RDD的存储级别为MEMORY,持久化的分区为8,完全存储于内存中。

  • 上述操作说明,调用RDD的persist()方法只是将该RDD标记为持久化,当执行行动操作时才会对标记为持久化的RDD进行持久化操作。

  • 执行以下命令,创建rdd2,并将rdd2持久化到磁盘

刷新上述WebUI,发现多了一个MapPartitionsRDD的存储信息,该RDD的存储级别为DISK,持久化的分区为8,完全存储于磁盘中。 

(三)将RDD从缓存中删除

  • Spark会自动监视每个节点上的缓存使用情况,并以最近最少使用的方式从缓存中删除旧的分区数据。如果希望手动删除RDD,而不是等待该RDD被Spark自动从缓存中删除,那么可以使用RDD的unpersist()方法。
  • 执行命令:rdd.unpersist(),将rdd(ParallelCollectionRDD)从缓存中删除

刷新上述WebUI,发现只剩下了MapPartitionsRDDParallelCollectionRDD已被移除。 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为您介绍关于使用Spark RDD进行快速数据处理的相关内容。 Spark是一个用于大规模数据处理的快速、通用的计算引擎,其提供了一个分布式的数据处理框架,可以在一个集群中进行并行计算。其中,RDD(Resilient Distributed Datasets)是Spark中最核心的概念之一,它是一种可并行处理的、容错的数据结构,可以将数据存储在集群中的多个节点上,实现数据的快速处理。 使用Spark RDD进行快速数据处理的步骤如下: 1. 创建RDD:可以通过SparkContext对象创建RDD,支持从本地文件系统、HDFS、HBase等数据源读取数据。 2. 转换操作:通过一系列的转换操作(如map、filter、reduce等),对RDD中的数据进行处理,生成新的RDD。 3. 操作执行:通过执行操作(如count、collect等),触发对RDD中的数据进行计算。 4. 缓存机制Spark支持对RDD进行缓存,提高重复计算的效率。 使用Spark RDD进行快速数据处理的优点包括: 1. 高效性:Spark RDD支持并行计算,可以在多个节点上同时进行数据处理,大大提高了数据处理的效率。 2. 可扩展性:Spark可以在多个节点上进行分布式计算,可以轻松处理大规模数据集。 3. 容错性:Spark RDD支持数据的容错,当某一节点出现故障时,数据可以自动恢复。 希望这些内容能够帮助您了解关于使用Spark RDD进行快速数据处理的相关知识。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值