R语言实战笔记 基本统计分析-频数列联表和简单的独立性检验

本文介绍了如何使用R语言进行描述性统计分析,包括频数表、列联表的创建以及独立性检验。通过mtcars数据集展示了summary()和aggregate()函数的应用。接着,利用Arthritis数据集创建了一维和二维列联表,并通过prop.table()计算比例。卡方独立性检验和Fisher精确检验被用于检验变量间的独立性,而assocstats()函数则用于计算相关性的度量。
摘要由CSDN通过智能技术生成

描述性统计分析

使用车辆路试(mtcars)数据集。关注每加仑汽油行驶英里数(mpg),马力(hp),车重(wt)。

  •  
> myvars<-c("mpg","hp","wt")
> head(mtcars[myvars])

其中head只取最前面6行

  •  
> summary(mtcars[myvars])

通过summary()计算描述性统计量。summary()函数提供了最小值、最大值、四分位数、和数值型变量的均值,以及因子向量和逻辑型向量的频数统计。

  •  
> mystats <- function(x, na.omit=FALSE){
     if (na.omit)
         x <- x[!is.na(x)]
     m <- mean(x)
     n <- length(x)
     s <- sd(x)
     skew <- sum((x-m)^3/s^3)/n
     kurt <- sum((x-m)^4/s^4)/n - 3
     return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt))
 }
> sapply(mtcars[myvars], mystats)

summary()函数中并没有提供偏度和峰度打的计算函数,可以使用sapply()添加类似平均值、标准差、分布等特征。

  •  
> myvars<-c("mpg","hp","wt")
> aggregate(mtcars[myvars],by=list(am=mtcars$am),mean)
> aggregate(mtcars[myvars],by=list(am=mtcars$am),sd)

如图,mtcars中的数据,am是的取值只有1和0两种,aggregate()方法得到的结果是am分别为0或者1时,我们选中的mpg、hp、wt值的mean(平均值)或者sd(标准差)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值