Day3 PyTorch实现Logistic regression

本文介绍了如何使用PyTorch实现Logistic Regression,包括基础实现代码和通过torch.nn.Module定义网络结构。Logistic Regression常用于概率分析,通过Sigmoid函数将输出映射到0到1之间。
摘要由CSDN通过智能技术生成

PyTorch实现Logistic regression

  1. PyTorch基础实现代码
  2. 用PyTorch类实现Logistic regression, torch.nn.module写网络结构

Logistic regression 简单的理解为输出值在0到1之间的回归,可用其作为概率来分析判断
一般用Sigmoid函数,实现普通值到0和1之间的值的映射
sigmoid函数公式

所以 Logistic regression 的数学表达式如下
在这里插入图片描述

2.Pytorch实现

import torch
from torch.autograd import Variable

x_data = Variable(torch.Tensor([[0.6], [1.0], [3.5], [4.0]]))
y_data = Variable(torch.Tensor([[0.], [0.], [1.], [1.]]))

class Model(torch.nn.Module):
    def __init__(self):
        super(Model, s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值