巴恩斯利蕨数学公式及源码实现

之前在网上看到《不可思议的分形几何》视频,我对视频中的巴恩斯利蕨感兴趣,所以自己就上手用代码实现了。

巴恩斯利蕨数学公式

巴恩斯利蕨数学公式看原视频截图:

巴恩斯利蕨数学公式

巴恩斯利蕨源码实现:

package lyc.spring.fractal;

import javax.swing.*;
import java.awt.*;
import java.util.HashMap;
import java.util.Map;

/**
 * 巴恩斯利蕨
 */
public class BarnsleyFern extends JApplet {

    // 画板
    Image image = null;
    // 绘图
    Graphics graphics = null;
    // 画板的尺寸
    int width = 1500, height = 1500;
    // 图片中心坐标点所在位置
    int offsetX = 1000, offsetY = 50;
    // 缓存数据
    int x2 = 0, y2 = 0;
    // 像素数目
    int pixelCounts = 200000;
    // 图片放大倍数
    double magnification = 56;
    // 图像翻转
    int overturnY = 400;
    // 函数出现概率
    private static final int f1 = 1, f2 = 85,f3 = 7;
    // 定义map的键值对
    private static final String X = "x",Y = "y";
    // 创建Map容器
    Map<String,Double> entry = new HashMap<>(),temp = new HashMap<>();

    /**
     * 程序入口
     */
    public void init(){
        image = this.createImage(width, height);
        graphics = image.getGraphics();
        repaint();
    }

    /**
     * 绘图
     * @param g
     */
    public void paint(Graphics g) {
        // 画巴恩斯利蕨
        drawBarnsleyFern();
        // 绘图
        g.drawImage(image, 0, 0, this);
    }

    /**
     * 画巴恩斯利蕨
     */
    private void drawBarnsleyFern() {
        // 赋初始值
        entry.put(X,0D);
        entry.put(Y,0D);

        // 像素数目
        for(int i = 0; i < this.pixelCounts; i ++){
            // 生成随机数(Math.random()生成大于等于 0.0 且小于 1.0 的伪随机 double 值,
            // 故在生成的数字后面 * 99,再 + 1,才是1 - 100的随机数)
            int randomNumber = (int) (Math.random() * 99 + 1);
            // 选择函数公式
            if(randomNumber == f1){
                // 主干
                f1(entry);
            } else if(randomNumber > f1 && randomNumber <= (f1 + f2) ){
                // 叶片
                f2(entry);
            } else if(randomNumber > (f1 + f2) && randomNumber <= (f1 + f2 + f3)){
                // 左侧树叶
                f3(entry);
            } else {
                // 右侧树叶
                f4(entry);
            }

            // 将原图像数据按比例尺放大
            magnification(entry);

            // 图像翻转
            overturn();

            // 设置树叶颜色,采用的屏幕取色器取色,保证与视频中叶片颜色一致
            Color color = new Color(28,227,35);
            graphics.setColor(color);

            // 画点
            graphics.drawLine( x2 + offsetX,y2 + offsetY,x2 + offsetX,y2 + offsetY);
        }

    }

    /**
     * 图像上下翻转
     */
    private void overturn() {
        y2 = y2 - (y2 - overturnY) * 2;
    }

    /**
     * 原图片计算数据为厘米,而我的绘图,单位却是像素,因而需要根据自己电脑需求,将厘米转换为像素
     * @param entry
     */
    private void magnification(Map<String, Double> entry) {
        x2 = (int) (entry.get(X) * magnification);
        y2 = (int) (entry.get(Y) * magnification);
    }

    /**
     * 方程f1
     * @param entry
     */
    public void f1(Map<String, Double> entry){
        temp.put(X,0D);
        temp.put(Y,0.16 * entry.get(Y));
        deepCopy(entry,temp);
    }

    /**
     * 深度复制
     * @param entry 拷贝目的地
     * @param temp 源数据
     */
    private void deepCopy(Map<String, Double> entry, Map<String, Double> temp) {
        entry.put(X,temp.get(X));
        entry.put(Y,temp.get(Y));
    }

    /**
     * 方程f2
     * @param entry
     */
    public void f2(Map<String, Double> entry){
        double x = 0.85 * entry.get(X) + 0.04 * entry.get(Y);
        double y = -0.04 * entry.get(X) + 0.85 * entry.get(Y) + 1.6;
        temp.put(X,x);
        temp.put(Y,y);
        deepCopy(entry,temp);
    }

    /**
     * 方程f3
     * @param entry
     */
    public void f3(Map<String, Double> entry){
        double x = 0.2 * entry.get(X) - 0.26 * entry.get(Y);
        double y = 0.23 * entry.get(X) + 0.22 * entry.get(Y) + 1.6;
        temp.put(X,x);
        temp.put(Y,y);
        deepCopy(entry,temp);
    }

    /**
     * 方程f4
     * @param entry
     */
    public void f4(Map<String, Double> entry){
        double x = -0.15 * entry.get(X) + 0.28 * entry.get(Y);
        double y = 0.26 * entry.get(X) + 0.24 * entry.get(Y) + 0.44;
        temp.put(X,x);
        temp.put(Y,y);
        deepCopy(entry,temp);
    }

}

巴恩斯利蕨运行结果:

巴恩斯利蕨公式运行效果:

巴恩斯利蕨运行效果图

注意事项

单位换算

视频中的公式,计算结果是厘米,但是我在程序实现时,却是使用的像素,因而需要将计算结果进行单位转换,将其厘米数据转换为像素数据。

这块代码就是:

    /**
     * 原图片计算数据为厘米,而我的绘图,单位却是像素,因而需要根据自己电脑需求,将厘米转换为像素
     * @param entry
     */
    private void magnification(Map<String, Double> entry) {
        x2 = (int) (entry.get(X) * magnification);
        y2 = (int) (entry.get(Y) * magnification);
    }

图像翻转

由于程序的Graphics初始坐标为(0,0),位于左上角,因而画出来的图形是上下颠倒的,在恢复视频中图形状态时,需要对其进行上下翻转,这部分代码如下:

    /**
     * 图像上下翻转
     */
    private void overturn() {
        y2 = y2 - (y2 - overturnY) * 2;
    }

注:上述内容来自《巴恩斯利蕨数学公式及源码实现》,该文章也是我亲自所写,这是将其由知乎平台转到CSDN平台上的内容,由于作者是同一人,所以这属于原创文章。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值