之前在网上看到《不可思议的分形几何》视频,我对视频中的巴恩斯利蕨感兴趣,所以自己就上手用代码实现了。
巴恩斯利蕨数学公式
巴恩斯利蕨数学公式看原视频截图:
巴恩斯利蕨源码实现:
package lyc.spring.fractal;
import javax.swing.*;
import java.awt.*;
import java.util.HashMap;
import java.util.Map;
/**
* 巴恩斯利蕨
*/
public class BarnsleyFern extends JApplet {
// 画板
Image image = null;
// 绘图
Graphics graphics = null;
// 画板的尺寸
int width = 1500, height = 1500;
// 图片中心坐标点所在位置
int offsetX = 1000, offsetY = 50;
// 缓存数据
int x2 = 0, y2 = 0;
// 像素数目
int pixelCounts = 200000;
// 图片放大倍数
double magnification = 56;
// 图像翻转
int overturnY = 400;
// 函数出现概率
private static final int f1 = 1, f2 = 85,f3 = 7;
// 定义map的键值对
private static final String X = "x",Y = "y";
// 创建Map容器
Map<String,Double> entry = new HashMap<>(),temp = new HashMap<>();
/**
* 程序入口
*/
public void init(){
image = this.createImage(width, height);
graphics = image.getGraphics();
repaint();
}
/**
* 绘图
* @param g
*/
public void paint(Graphics g) {
// 画巴恩斯利蕨
drawBarnsleyFern();
// 绘图
g.drawImage(image, 0, 0, this);
}
/**
* 画巴恩斯利蕨
*/
private void drawBarnsleyFern() {
// 赋初始值
entry.put(X,0D);
entry.put(Y,0D);
// 像素数目
for(int i = 0; i < this.pixelCounts; i ++){
// 生成随机数(Math.random()生成大于等于 0.0 且小于 1.0 的伪随机 double 值,
// 故在生成的数字后面 * 99,再 + 1,才是1 - 100的随机数)
int randomNumber = (int) (Math.random() * 99 + 1);
// 选择函数公式
if(randomNumber == f1){
// 主干
f1(entry);
} else if(randomNumber > f1 && randomNumber <= (f1 + f2) ){
// 叶片
f2(entry);
} else if(randomNumber > (f1 + f2) && randomNumber <= (f1 + f2 + f3)){
// 左侧树叶
f3(entry);
} else {
// 右侧树叶
f4(entry);
}
// 将原图像数据按比例尺放大
magnification(entry);
// 图像翻转
overturn();
// 设置树叶颜色,采用的屏幕取色器取色,保证与视频中叶片颜色一致
Color color = new Color(28,227,35);
graphics.setColor(color);
// 画点
graphics.drawLine( x2 + offsetX,y2 + offsetY,x2 + offsetX,y2 + offsetY);
}
}
/**
* 图像上下翻转
*/
private void overturn() {
y2 = y2 - (y2 - overturnY) * 2;
}
/**
* 原图片计算数据为厘米,而我的绘图,单位却是像素,因而需要根据自己电脑需求,将厘米转换为像素
* @param entry
*/
private void magnification(Map<String, Double> entry) {
x2 = (int) (entry.get(X) * magnification);
y2 = (int) (entry.get(Y) * magnification);
}
/**
* 方程f1
* @param entry
*/
public void f1(Map<String, Double> entry){
temp.put(X,0D);
temp.put(Y,0.16 * entry.get(Y));
deepCopy(entry,temp);
}
/**
* 深度复制
* @param entry 拷贝目的地
* @param temp 源数据
*/
private void deepCopy(Map<String, Double> entry, Map<String, Double> temp) {
entry.put(X,temp.get(X));
entry.put(Y,temp.get(Y));
}
/**
* 方程f2
* @param entry
*/
public void f2(Map<String, Double> entry){
double x = 0.85 * entry.get(X) + 0.04 * entry.get(Y);
double y = -0.04 * entry.get(X) + 0.85 * entry.get(Y) + 1.6;
temp.put(X,x);
temp.put(Y,y);
deepCopy(entry,temp);
}
/**
* 方程f3
* @param entry
*/
public void f3(Map<String, Double> entry){
double x = 0.2 * entry.get(X) - 0.26 * entry.get(Y);
double y = 0.23 * entry.get(X) + 0.22 * entry.get(Y) + 1.6;
temp.put(X,x);
temp.put(Y,y);
deepCopy(entry,temp);
}
/**
* 方程f4
* @param entry
*/
public void f4(Map<String, Double> entry){
double x = -0.15 * entry.get(X) + 0.28 * entry.get(Y);
double y = 0.26 * entry.get(X) + 0.24 * entry.get(Y) + 0.44;
temp.put(X,x);
temp.put(Y,y);
deepCopy(entry,temp);
}
}
巴恩斯利蕨运行结果:
巴恩斯利蕨公式运行效果:
注意事项
单位换算
视频中的公式,计算结果是厘米,但是我在程序实现时,却是使用的像素,因而需要将计算结果进行单位转换,将其厘米数据转换为像素数据。
这块代码就是:
/**
* 原图片计算数据为厘米,而我的绘图,单位却是像素,因而需要根据自己电脑需求,将厘米转换为像素
* @param entry
*/
private void magnification(Map<String, Double> entry) {
x2 = (int) (entry.get(X) * magnification);
y2 = (int) (entry.get(Y) * magnification);
}
图像翻转
由于程序的Graphics初始坐标为(0,0),位于左上角,因而画出来的图形是上下颠倒的,在恢复视频中图形状态时,需要对其进行上下翻转,这部分代码如下:
/**
* 图像上下翻转
*/
private void overturn() {
y2 = y2 - (y2 - overturnY) * 2;
}
注:上述内容来自《巴恩斯利蕨数学公式及源码实现》,该文章也是我亲自所写,这是将其由知乎平台转到CSDN平台上的内容,由于作者是同一人,所以这属于原创文章。