数据结构之复杂度

目录

算法效率

如何衡量一个算法的好坏——算法的复杂度

时间复杂度

大O的渐进表示法

例题

空间复杂度

大O的渐进表示法

例题

常见复杂度的对比


算法效率

如何衡量一个算法的好坏——算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度空间复杂度
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
    for (int j = 0; j < N ; ++ j)
    {
        ++count;
    }
}

for (int k = 0; k < 2 * N ; ++ k)
{
    ++count;
}

int M = 10;
while (M--)
{
    ++count;
}

printf("%d\n", count);
}

Func1 执行的基本操作次数 : F(N)=  N^2 + 2*N + 10

N精确值估算值
N = 10F(N) = 130100
N = 100F(N) = 1021010000
N = 1000   F(N) = 10020101000000

可以发现N越大,阶数低的项对结果的影响越小。 

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

因此Func1的时间复杂度为:O(N^2)

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

例题

void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

F(N) = 2*N +10 \therefore O(N)


void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
        ++count;
    }
    for (int k = 0; k < N ; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

O(M+N)  因为M与N无明确关系,不可省略


void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

O(1)    不是代表1次,是代表常数次


// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character )
{
    while(*str)
    {
        if(*str == character)
        {
            return str;
        }
        else
        {
            str++;
        }
    }
}

 O(N)  最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)


// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

O(N^2)    F(N) = N*(N-1)/2  


int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n-1;
    // [begin, end]:begin和end是左闭右闭区间,因此有=号
    while (begin <= end)
    {
        int mid = begin + ((end-begin)>>1);
        if (a[mid] < x)
            begin = mid+1;
        else if (a[mid] > x)
            end = mid-1;
        else
            return mid;
    }
    return -1;
}

O(logN) 

 2^x = N \therefore x = logN 


long long Fac(size_t N)
{
    if(0 == N)
        return 1;
    return Fac(N-1)*N;
}

 O(N) 共调用了N+1次Fac函数,每次调用都执行常数次(1次),所以是O(N)

long long Fac(size_t N)
{
    if(0 == N)
        return 1;
    for(int i = 0; i<N; i++)
    {    
        //...
    }
    return Fac(N-1)*N;
}

O(N^2)    共调用了N+1次Fac函数,每次调用都执行对应的N次,F(N) = N*(N+1)/2,所以是O(N^2)


计算斐波那契数列的时间复杂度?

long long fib(size_t N)
{
    if(N<3) return 1;

    return fib(N-1)+fib(N-2);
}

 等比数列求和或错位相减法

 虽然结果有误差,但是数量级相差不多,时间复杂度为O(2^N).


消失的数字OJ链接:https://leetcode-cn.com/problems/missing-number-lcci/

1.排序,依次查找如果下一个数不是上一个数+1,那么上一个数+1就是消失的数字.O(N*logN)

2.异或  O(N)

int missingNumber(int* nums, int numsSize){
    int x =0;
    for(int i =0;i<numsSize;i++)
    {
        x^=nums[i];
    }
    for(int i =0;i<numsSize+1;i++)
    {
        x^=i;
    }
    return x;
}

3.等差数列求和减数组和 O(N)

int missingNumber(int* nums, int numsSize){
    int sum = 0;
    for(int i = 0;i<numsSize;i++)
    {
        sum += nums[i];
    }
    return numsSize*(numsSize+1)/2 - sum;
}

旋转数组OJ链接:https://leetcode-cn.com/problems/rotate-array/

1.暴力求解

 时间复杂度:O(N^2)

空间复杂度:O(1)

2.三段逆置

 时间复杂度:O(N)

空间复杂度:O(1) 

void reverse(int arr[],int begin, int end)
{
    while (begin <= end)
    {
        int tmp = arr[begin];
        arr[begin] = arr[end];
        arr[end] = tmp;
        begin++;
        end--;
    }
}
void rotate(int* nums, int numsSize, int k)
{
     k %= numsSize;
    reverse(nums, numsSize - k, numsSize - 1);
    reverse(nums, 0, numsSize - k - 1);
    reverse(nums, 0, numsSize - 1);
    
}

3.空间换时间 

 时间复杂度:O(N)

空间复杂度:O(N)

void rotate(int* nums, int numsSize, int k){
    k%=numsSize;
    int* tmp = (int*)malloc(sizeof(int)*numsSize);
    memcpy(tmp+k,nums,sizeof(int)*(numsSize-k));
    memcpy(tmp,nums+numsSize-k,sizeof(int)*k);
    memcpy(nums,tmp,sizeof(int)*numsSize);
    free(tmp);
}

 

空间复杂度

一个算法在运行过程中临时额外占用存储空间大小的量度 。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。


大O的渐进表示法


大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

O()括号里面的数更多的表达的是这个算法的量级,大O是一个估算,并不是准确的执行次数。

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项系数存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。


例题

冒泡排序

void BubbleSort(int* a, int n)
{
    for(size_t end = n; end>0; n--)
    {
        int flag = 0;
        for(size_t i = 1; i<end; i++)
        {
            int tmp = 0;
            if(a[i-1]>a[i])
            {
                tmp = arr[i-1];
                arr[i-1] = arr[i];
                arr[i] = tmp;
                flag = 1;
            }
        }
        if (0==flag) break;    
    }
}

冒泡排序的空间复杂度为:O(N)


 计算阶乘递归的时间复杂度


// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
     if(N == 0)
     return 1;
 
     return Fac(N-1)*N;
}

阶乘的空间复杂度为:O(N)


计算用数组实现还有用变量实现的斐波拉契数列的空间复杂度

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
     if(n==0)
     return NULL;
 
     long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
     fibArray[0] = 0;
     fibArray[1] = 1;
     for (int i = 2; i <= n ; ++i)
     {
         fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
     }
     return fibArray;
}
用数组实现斐波拉契数列的空间复杂度:O(N).

用三个变量来回计算斐波拉契数列的空间复杂度是:O(N).

用递归实现的斐波拉契数的空间复杂度:O(N).

先计算一下在主函数中重复调用两个函数,函数所占用的空间大小。


 计算用递归实现的斐波拉契数的空间复杂度

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
     if(N < 3)
         return 1;
 
     return Fib(N-1) + Fib(N-2);
}

用递归实现的斐波拉契数的空间复杂度:O(N).

先计算一下在主函数中重复调用两个函数,函数所占用的空间大小。

 

空间是可以重复利用的。

把空间还给操作系统,释放了,而不是销毁了,只是把使用权交给操作系统了

空间复杂度基本上是O(1)或者O(N),其它的空间复杂度不常见。假设开一个N*N的数组,那么它的空间复杂度是O(N^2)。结构体不讨论结构体个数,只看整体。不看具体,只看量级。


常见复杂度的对比

表格越往下复杂度相对越高:

5201314

O(1)

常数阶
3log(2)n+4O(log(2)n)对数阶
3n+4O(n)线性阶
2n+3nlog(2)n+14O(nlog(2)n)nlogn阶
3n^2+4n+5O(n^2)平方阶
4n^3+3n^2+4n+5O(n^3)立方阶
2^nO(2^n)指数阶

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值