数据结构之二叉树

 树概念及结构

树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点(父结点)。
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
  • 因此,树是递归定义的
  • 注意:树形结构中,子树之间不能有交集,否则就不是树形结构

 

树的相关概念

 结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6


叶结点或终端结点度为0的结点称为叶结点; 如上图:B、C、H、I...等结点为叶结点


非终端结点或分支结点度不为0的结点; 如上图:D、E、F、G...等结点为分支结点


双亲结点或父结点:若一个结点含有子结点,则这个节点称为其子结点的父结点; 如上图:A是B的父结点


孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点


(亲)兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点


树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6


结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;


树的高度或深度:树中结点的最大层次; 如上图:树的高度为4


堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点


结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先、A和F都是K、L、M的祖先


子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙


森林:由m(m>0)棵互不相交的树的集合称为森林;(并查集)

树的表示 

1.直接表示,如果明确了树的度,可以定义

struct TreeNode
{
    int data;
    struct TreeNode* child1;
    struct TreeNode* child2;
    //...;
}

2.顺序表存储子结点

struct TreeNode
{
    int data;
    struct TreeNode* childeArr;//SeqList
};

3.双亲表示法(每个结点只存储双亲指针下标)

struct TreeNode
{
    int data;
    int parenti;
}

 4.左孩子右兄弟表示法(简化了树的定义)

typedef int DataType;
struct Node
{
    struct Node* _firstChild1; // 第一个孩子结点
    struct Node* _pNextBrother; // 指向其下一个兄弟结点
    DataType _data; // 结点中的数据域
};

树在实际中的运用(表示文件系统的目录树结构)


 二叉树概念及结构

概念

一棵二叉树是结点的一个有限集合,该集合:
        1. 为空
        2. 或者由一个根节点加上两棵别称为左子树和右子树的二叉树组成

注意:

        1. 二叉树不存在度大于2的结点
        2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

对于任意的二叉树都是由以下几种情况复合而成的:

特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为h,且结点总数是2^{h}-1 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

 简而言之:满二叉树每一层都是满的,完全二叉树前k-1层是满的,最后一层可以不满,但是从左到右是连续的。

二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^{(i-1)}个结点. (特殊地,如果        是满二叉树则第i层有2^{(i-1)}个结点)

2.若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 :2^{h}-1(满二叉树),最小结       点数是:2^{(h-1)}. (等比数列求和)

3. 对任何一棵非空二叉树, 如果度为0其叶结点个数为n_{0}, 度为2的分支结点个数为n_{2},则有

    n_{0}n_{2} +1.

4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= . (ps: 是log以2
    为底,n+1为对数)

5.完全二叉树的父子间下标关系:

   父亲坐标找孩子:leftchild = 2*parent+1,rightchild = 2*parent+2.

   孩子坐标找父亲:parent = (child-1)/2.(左右孩子都是,因为是取整)

 

 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

  顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实使用中只有堆才会使用数组来存储。

二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

         

链式存储 

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,红黑树等会用到三叉链。


 二叉树的顺序结构及实现

 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

 堆的概念及结构

如果有一个关键码的集合K = { k_{0}k_{1}k_{2} ,…,k_{n-1} },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:k_{i} <=k_{2i+1}k_{i}<=k_{2i+2} (k_{i}>= k_{2i+1}k_{i} >= k_{2i+2}) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质
  • 堆总是一棵完全二叉树
  • 大堆:树的任何一个父亲都大于等于孩子,
  • 小堆:数的任何一个父亲都小于等于孩子
堆的实现(小堆为例)
Heap.h
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>
typedef int HPDataType;
typedef struct Heap {
	HPDataType* a;
	int size;
	int capacity;
}HP;

void AdjustUp(HPDataType* a, int child);//向上调整
void AdjustDown(int* a, int n, int parent);//向下调整

void HeapInit(HP* php);//初始化
void HeapDesdroy(HP* php);//销毁
void HeapPush(HP* php, HPDataType x);//向堆插入数据
void HeapPop(HP* php);//删除堆顶的数据
HPDataType HeapTop(HP* php);//返回堆顶元素
bool HeapEmpty(HP* php);//判断堆是否为空
int HeapSize(HP* php);//返回堆的大小
 Heap.c
 常规操作
void HeapInit(HP* php)//堆的初始化
{
	assert(php);
	php->a = NULL;
	php->size = php->capacity = 0;
}

void HeapDestroy(HP* php)//堆的销毁
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

void Swap(HPDataType* p1, HPDataType* p2)//交换值
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

bool HeapEmpty(HP* php)//判断是否为空堆
{
	assert(php);
	return php->size == 0;
}

HPDataType HeapTop(HP* php)//返回堆顶元素
{
	assert(php);
	assert(!HeapEmpty(php));

	return php->a[0];
}

int HeapSize(HP* php)//返回堆的大小
{
	assert(php);

	return php->size;
}
 堆的插入与向上调整算法

向上调整算法有一个前提:原来的数据必须是一个堆。

void AdjustUp(HPDataType* a,int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)//child为0时代表已经到达根节点,不需要再判断.注意:不能用while(parent >= 0),死循环.
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);

			child = parent;
			parent = (child - 1) / 2;
		}
		else 
		{
			break;
		}
	}
}

void HeapPush(HP* php,HPDataType x)
{
	assert(php);

	if (php->size == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HP* tmp = (HP*)realloc(php->a,sizeof(HPDataType)*newcapacity);
		if (tmp == NULL)
		{
			perror("malloc fail");
			exit(-1);
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;//插入数据
	php->size++;//调整堆的大小
	AdjustUp(php->a,php->size-1);//向上调整
}
堆的删除与向下调整算法 

删除堆是删除堆顶的数据,将堆顶的数据与最后一个数据交换,然后删除数组最后一个数据,再进行向下调整算法。

数组变为{28,15,19,25,18,34,65,49,27,37},逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是堆,才能调整。

void AdjustDown(HPDataType* a,int n,int parent)
{
	int child = parent * 2 + 1;
	while (child < n)//孩子结点不越界
	{
		if (child+1<n && a[child + 1] < a[child]) //挑选较小的孩子:如果有右孩子并且右孩子的值小于左
		{                                     //孩子,child变为右孩子.没有右孩子child就是左孩子
			child ++;
		}
		if (a[child] < a[parent])             //向下调整
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));

	Swap(&php->a[0], &php->a[php->size - 1]);//交换堆顶元素和堆的最后一个元素
	php->size--;//删除数组最后一个元素,即堆顶元素
	AdjustDown(php->a, php->size, 0);//向下调整
}
堆的应用
堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:


一. 建堆

升序:建大堆
降序:建小堆

(升序建小堆也可以,但是效率低。一个数组,如果升序,建小堆后top可以得到最小值,
那想得到次小值需要把最小值先保存,不然继续,空间复杂度就是O(N)。第一个数据保存后,要选出次小的数据,剩余数据需要重新建堆,而且把第一个删除之后原来堆里的关系也就全乱了。降序同理)

因此,利用堆删除的思想,以升序为例,建大堆之后,每次将堆顶元素和堆尾元素交换,排除堆尾元素,前面的数据向下调整为新的大堆找到次大值,直到根节点排序结束,所以升序建大堆,降序建小堆。

1.向上调整建堆

直接一个一个进行元素的插入就行了,向上调整建堆要求原来数据是一个堆,每插入一个数据调整一次,就保证了每次插入前原数据就是一个堆。

int main()
{
	int arr[] = { 27,15,19,18,28,34,65,49,25,37 };
    int size = sizeof(arr)/sizeof(arr[0]);
	for (int i = 1; i < size; i++)
	{
		AdjustUp(arr, i);
	}
	return 0;
}

2.向下调整建堆

int arr[] = {27,15,19,18,28,34,65,49,25,37};

如果它的左右子树已经满足是一个堆,我们可以利用向下调整算法将它变成一个堆。

但更多情况是左右子树都不是堆,想让它的左右子树都变成堆,我们可以从最后一个结点开始,向前依次调整。但是,最后的这几个叶子结点,可以直接略过,因为这几个没有孩子结点,可以把它看成一个大堆,也可以看成小堆。所以,我们只需从倒数第一个非叶子结点开始,依次向前对每一棵子树进行向下调整将其变为堆,这样在调整前面结点的时候,它们对应的左右子树就已经满足是堆了,一直到将根结点调整完,堆就建好了。
倒数第一个非叶子结点就是最后一个结点的父亲结点。

int main()
{
	int arr[] = { 27,15,19,18,28,34,65,49,25,37 };
    int size = sizeof(arr)/sizeof(arr[0]);
	for (int i = (size-1-1)/2; i >=0 ; i--)
	{
		Adjustdown(arr,size, i);
	}
	return 0;
}

3.两种建堆方式的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

向下调整建堆:

一棵满二叉树的基础上,所有非叶子结点和它的孩子结点的大小关系都不满足,都需要交换且需要交换到最后一层才满足大小关系,这时是最坏的情况。

 因此:向下调整建堆的时间复杂度为O(N)。 

向上调整建堆:

向上调整建堆的时间复杂度:O(N) = N*log_{2}N 

所以向上调整建堆没有没有向下调整建堆优。

二. 利用堆删除思想来进行排序

由上分析建堆使用向下调整更优,堆删除中也用到了向下调整,因此使用向下调整,就可以完成堆排序。

void AdjustDown(HPDataType* a,int n,int parent)
{
	int child = parent * 2 + 1;
	while (child < n)//孩子结点不越界
	{
		if (child+1<n && a[child]>a[child + 1]) //挑选较小的孩子:如果有右孩子并且右孩子的值小于左
		{                                     //孩子,child变为右孩子.没有右孩子child就是左孩子
			child ++;
		}
		if (a[child] < a[parent])             //向下调整
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HeapSort(int* a, int n)
{
	// 升序 -- 建大堆
	// 降序 -- 建小堆


	// 建堆--向上调整建堆 --O(N*logN)
	//for (int i = 1; i < n; i++)
	//{
	//	AdjustUp(a, i);
	//}

	// 建堆--向下调整建堆 --O(N)
	for (int i = (n-1-1)/2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}
    //交换数据后,向下调整建堆
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);

		// 再调整,选出次小的数
		AdjustDown(a, end, 0);
        //先调整,最后--end,end即是堆尾元素下标,也是新堆的size。
		--end;
	}
}
三、堆排序的时间复杂度

第h层结点与根结点交换后最多要向下调整h-1次,第h-1层结点最多向下调整h-2次,以此类推,计算过程与向上调整建堆一样,结果为O(N) = N*log_{2}N,加上第一步向下调整建堆O(N) = N*log_{2}N + N \approx N*log_{2}N,所以堆排序时间复杂度为N*log_{2}N

TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是,如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中,在)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆
        前k个最大的元素,则建小堆
        前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素,如果求最大的前K个元素,后N-K个元素依次与堆顶元素比较,如果比堆顶元素大,则替换,然后向下调整。

3.将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。 

时间复杂度:首先k个数建堆,然后假设后面每个数比较都要替换和进行向下调整,那就是K+(N- K)*log_{2}K,那数据很多的情况下,k相对于N就很小了,则可以认为时间复杂度是O(N*log_{2}K)
空间复杂度:O(K)

void CreateNDate()
{
	// 造数据
	int n = 10000;
	srand(time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");
	if (fin == NULL)
	{
		perror("fopen error");
		return;
	}

	for (size_t i = 0; i < n; ++i)
	{
		int x = rand() % 1000000;
		fprintf(fin, "%d\n", x);
	}

	fclose(fin);
}

void PrintTopK(int k)
{
	const char* file = "data.txt";
	FILE* fout = fopen(file, "r");
	if (fout == NULL)
	{
		perror("fopen error");
		return;
	}

	int* kminheap = (int*)malloc(sizeof(int) * k);
	if (kminheap == NULL)
	{
		perror("malloc error");
		return;
	}

	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &kminheap[i]);
	}

	// 建小堆
	for (int i = (k-1-1)/2; i >= 0; i--)
	{
		AdjustDown(kminheap, k, i);
	}

	int val = 0;
	while (!feof(fout))
	{
		fscanf(fout, "%d", &val);
		if (val > kminheap[0])
		{
			kminheap[0] = val;
			AdjustDown(kminheap, k, 0);
		}
	}

	for (int i = 0; i < k; i++)
	{
		printf("%d ", kminheap[i]);
	}
	printf("\n");
}
typedef int BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;

BTNode* BuyNode(BTDataType x)
{
	BTNode* node = (BTNode*)malloc(sizeof(BTNode));
	if (node == NULL)
	{
		perror("malloc fail");
		return NULL;
	}

	node->data = x;
	node->left = NULL;
	node->right = NULL;

	return node;
}

BTNode* CreatBinaryTree()
{
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;

	return node1;
}

二叉树链式结构的实现

二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的。 

每个结点,只要不为空,就可以被分为根,左子树,右子树,因此,二叉树是递归定义的

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。
通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。 

前置说明 

先简单手动创建一颗二叉树方便使用,真正的构造单独列出。

typedef int BTDataType;
typedef struct BTreeNode
{
	BTDataType val;
	struct BTreeNode* left;
	struct BTreeNode* right;
}BTNode;

BTNode* CreatBinaryTree()
{
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);
	BTNode* node7 = BuyNode(7);
	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;
	node5->left = node7;
	return node1;
}

二叉树的遍历

前序、中序以及后序遍历

所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

 按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:
1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。(根 左子树 右子树)
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。

( 左子树 根 右子树)
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

(左子树 右子树 根)

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

前序遍历

棵子树都可以被分为根、左子树、右子树,一直分,一直分,直至被分成空(NULL)才停止。那在遍历时也是一样,每棵子树都要按照相同的规则去遍历它的根,左子树和右子树,除非它是空。

 

 首先访问根是1:
1
然后1的左子树2,对左子树2同样先访问根
1 2
然后2的左子树3,同样先访问根
1 2 3
3的根访问完是左子树,左子树是空:
1 2 3 NULL
然后是右子树,也是空:
1 2 3 NULL NULL
3整个访问完了,相当于2的左子树访问完了,然后是2的右子树,也是空:
1 2 3 NULL NULL NULL
2整个访问完了,相当于1的左子树访问完了,然后是1的右子树4,同样先访问根:
1 2 3 NULL NULL NULL 4
然后4的左子树5,同样先根:
1 2 3 NULL NULL NULL 4 5
根之后访问5的左子树,然后右子树,都是空:
1 2 3 NULL NULL NULL 4 5 NULL NULL
5整个访问完了,相当于4的左子树访问完了,然后是4的右子树6,同样先访问根:
1 2 3 NULL NULL NULL 4 5 NULL NULL 6
然后是6的左子树,然后右子树,都是空:
1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL
当然有时候为空的话我们可以省略,那就是:
1 2 3 4 5 6

 代码实现

根节点为空时可以不做处理,也可以打印“NULL”。

根节点不为空前序遍历先访问根,也就是先打印根结点的值。

根之后是左子树,那左子树同样可以看成一棵二叉树分成根,左子树右子树,就可以用递归了。

// 二叉树前序遍历
void PreOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	
	printf("%d ", root->data);
	PreOrder(root->left);
	PreOrder(root->right);
	
}

 中序遍历、后序遍历

中序(左子树、根、右子树):
NULL 3 NULL 2 NULL 1 NULL 5 NULL 4 NULL 6 NULL
后序(左子树、右子树、根):
NULL NULL 3 NULL 2 NULL NULL 5 NULL NULL 6 4 1

// 二叉树中序遍历
void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	
	PreOrder(root->left);
	printf("%d ", root->data);
	PreOrder(root->right);
}
// 二叉树后序遍历
void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	PreOrder(root->left);
	PreOrder(root->right);
	printf("%d ", root->data);
}
层序遍历 

设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

要实现层序遍历,需要借助队列来实现:先让根结点入队列,然后如果队列不为空,就取队头数据,并将队头数据的子结点入队列,然后继续出对头数据,再将其子结点入队列,依次循环往复,直到队列为空,就遍历完成了。

void LevelOrder(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
		QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		printf("%d ", front->data);
		if (front->left)
			QueuePush(&q, front->left);
		if (front->right)
			QueuePush(&q, front->right);
	}
}

 判断一棵树是否是完全二叉树

完全二叉树每一层都是连续的,层序遍历一遍如果空结点后全是空结点,就是一颗完全二叉树

bool BTreeComplete(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
		QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		if (front == NULL)
		{
			break;
		}
		else
		{
			QueuePush(&q, front->left);
			QueuePush(&q, front->right);
		}
	}
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		if (front != NULL)
		{
			QueueDestroy(&q);
			return false;
		}
	}
	QueueDestroy(&q);
	return true;
}

二叉树结点个数、高度、查找等

求二叉树结点个数

错误代码

//统计结点个数
int BTreeSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	int size = 0;//static size;也有问题
	size++;
	BTreeSize(root->left);
	BTreeSize(root->right);
	return size;
}

size是定义在函数内部的一个局部变量,每次递归,都会建立新的函数栈帧,那size自然也会随着每次递归在新的函数栈帧中重新创建。
所以,每次递归,size都会重新定义,而每次++的也不是同一个size。

使用全局变量或static修饰局部变量size也不能很好地解决问题。

1.因为size被static修饰后,其生命周期就是整个程序的生命周期,等到程序结束它才会被销毁,用全局变量也是这样。
所以,第一次调用结果可能没问题,但如果再去调用,size也不会重新定义,因此结果会在上一次函数调用得到的size的基础上继续更改,比如如果对同一颗树调用三次BTreeSize函数每次的结果都比前一次多size。
而且static修饰的话中间程序不结束我们还没有办法给size重新赋初值。
2.那只有把size定义成全局变量,且每次调用之前,将size手动置成0。

正确代码 

如果结点为空返回0,否则递归求出左子树结点个数+右子树结点个数+1,+1是要加上结点本身,此方法类似后续遍历的思想。​​​​​​​​​​​​​​

int BTreeSize(BTNode* root)
{
	/*if (root == NULL)
		return 0;

	return BTreeSize(root->left)
		+ BTreeSize(root->right)
		+ 1;*/

	return root == NULL ? 0 : BTreeSize(root->left)
							+ BTreeSize(root->right) + 1;
}

 求二叉树叶子结点个数

​​​​​​​如果遇到空,就返回0;不是空,那就判断它是不是叶子结点,是的话返回一个1,不是的话,就返回它的左子树的叶子结点个数+右子树的叶子结点个数

// 求叶子节点的个数
int BTreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}

	if (root->left == NULL
		&& root->right == NULL)
	{
		return 1;
	}

	return BTreeLeafSize(root->left)
		+ BTreeLeafSize(root->right);
}

求二叉树高度/深度

错误代码

int BTreeHeight(BTNode* root)
{
	if (root == NULL)
	    return 0;

	return BTreeHeight(root->left) > BTreeHeight(root->right)
		? BTreeHeight(root->left) + 1 : BTreeHeight(root->right) + 1;
}

这种写法非常不好,会导致计算效率大大降低。因为三目运算比较完左右子树的高度后,由于结果没有保存,后面确定该表达式的最终结果时,又重复了比较时需要的运算,造成大量的重复计算,当树深度很深时,效率非常低。

优化代码

​​​​​​​​​​​​​​如果是空树,就返回0;如果不是空树,返回其左右子树高度中的最大值再+1(即加上当前根结点所处的这一层的1个高度)。 

int BTreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	int leftHeight = BTreeHeight(root->left);
	int rightHeight = BTreeHeight(root->right);

	return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}

求第K层结点个数(k>=1)

子问题:转化为左子树的第k-1层和右子树的1第k-1层

结束条件:1.结点是空返回0 

                  2.k==1返回1

int BTreeLevelKSize(BTNode* root, int k)
{
	assert(k > 0);
		
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}
二叉树查找值为x的节点 

利用前序遍历,根结点如果为空就返回NULL,若不为空与待找值比较,找不到就从左树开始找,左树找不到从右树找,都找不到返回NULL。

BTNode* BTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == x)
	{
		return root;
	}
	BTNode* ret1 = BTreeFind(root->left,x);
	if (ret1)
	{
		return ret1;
	}
	BTNode* ret2 = BTreeFind(root->right, x);
	if (ret2)
	{
		return ret2;
	}
	return NULL;
}

二叉树的构建和销毁

前序遍历构建二叉树
BTNode* BuyNode(BTDataType x)
{
    struct BTreeNode* root = (struct BTreeNode*)malloc(sizeof(struct BTreeNode));
    if(root == NULL)
    {
        perror("malloc fail")
        exit(-1);
    }
    root->data = x;
    root->left = NULL;
    root->right = NULL;
    return root;
}

BTNode* BTreeCreate(BTDataType* a,int* pi)
 {
    if(a[*pi] == '#')
    {
        (*pi)++;
        return NULL;
    }

    BTNode* root = BuyNode(a[*pi]);
    (*pi)++;
    root->left = BTreeCreate(a,pi);
    root->right = BTreeCreate(a,pi);
    return root;
 }

int main() {
    char arr[101];
    scanf("%s",arr);//输入的字符串要能构建成一棵树,如ABD##E#H##CF##G##
    int i = 0;
    BTNode* root = BTreeCreate(arr,&i);
    return 0;
}
  二叉树的销毁
void BTreeDestroy(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	BTreeDestroy(root->left);
	BTreeDestroy(root->right);
	free(root);
    //root = NULL;没传二级指针,置空需要在调用出手动置空
}

例题

两棵树是否相等

两棵树是否相等

前序遍历思想

bool isSameTree(struct TreeNode* p, struct TreeNode* q){
    if(p == NULL && q==NULL)//p和q都为空,树相等
    {
        return true;
    }
    if(p == NULL || q == NULL)//根结点p和q有一个为空,树不相等
    {
        return false;
    }
    if(p->val != q->val)//根结点p和q值不相等,数不相等
    {
        return false;
    }
    return isSameTree(p->left,q->left) && isSameTree(p->right,q->right);//根结点相等比较左右树是否相等
}

单值二叉树

单值二叉树

前序比较,等号具有传递性,先判断左子树和根结点值是否相等,相等继续翻盘右子树和根结点值是否相等,都相等从左子树开始继续向下判断。

bool isUnivalTree(struct TreeNode* root){
    if(root == NULL)
    {
        return true;
    }

    if(root->left && root->left->val != root->val)
    {
        return false;
    }
    
    if(root->right && root->right->val != root->val)
    {
        return false;
    }
    
    return isUnivalTree(root->left) && isUnivalTree(root->right);

}


对称二叉树

对称二叉树

重新定义一个函数比较左右子树

bool _isSymmetric(struct TreeNode* leftRoot,struct TreeNode* rightRoot)
 {
     if(leftRoot == NULL && rightRoot == NULL)//左右子树都为空则对称
     {
         return true;
     }
     if(leftRoot == NULL || rightRoot == NULL)//左右子树有一个为空就不对称
     {
         return false;
     }
     if(leftRoot->val != rightRoot->val)//左右子树值不相等不对称
    {
        return false;
    }
    bool ret1 =  _isSymmetric(leftRoot->left,rightRoot->right);
    bool ret2 =  _isSymmetric(leftRoot->right,rightRoot->left);
    return ret1 && ret2;//子问题:左子树的左子树与右子树的右子树、左子树的右子树与右子树的左子树            是否相等

 }
bool isSymmetric(struct TreeNode* root){
    return _isSymmetric(root->left,root->right);
}


oj版前序遍历 

前序遍历

int TreeSize(struct TreeNode* root)
{
    return root == NULL ? 0 : TreeSize(root->left)+TreeSize(root->right)+1;
}
int* preorderTraversal(struct TreeNode* root, int* returnSize){
    *returnSize = TreeSize(root);
    int* i = (int*)malloc(sizeof(int));
    *i = 0;
    int* ret = (int*)malloc((*returnSize)*sizeof(int));
    _preorder(root,ret,i);
    return ret;
}
 void _preorder(struct TreeNode* root,int* a,int* i)
 {
    if(root == NULL) return;
    a[(*i)++] = root->val;
    _preorder(root->left,a,i);
    _preorder(root->right,a,i);
 }

另一棵树的子树

另一棵树的子树​​​​​​​

bool isSameTree(struct TreeNode* p, struct TreeNode* q){
    if(p == NULL && q==NULL)
    {
        return true;
    }
    if(p==NULL||q==NULL)
    {
        return false;
    }
    if(p->val!=q->val)
    {
        return false;
    }
    return isSameTree(p->left,q->left) &&isSameTree(p->right,q->right);

}

bool isSubtree(struct TreeNode* root, struct TreeNode* subRoot){
    if (root == NULL) 
        return false;
    if(isSameTree(root,subRoot)) 
        return true;
    return isSubtree(root->left,subRoot) || isSubtree(root->right,subRoot);
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值