线段树分治总结

首先,要求可以离线
线段树分治有两种。

类型一

操作基于区间,单点询问。

有时,进行的一种操作可以快速完成,但是,要实现这种操作的逆操作较难。
因为,通常情况下,需要实现的逆操作都是很久以前执行的。
但是,如果只撤销上次操作,就会简单得多。
比如,维护一些连通性,或直径,线性基等问题。
这类问题加边很好做,但删边很难实现。
我们可以扫一遍操作,得到每个操作的有效区间。
然后,将每个添加操作的有效区间按在线段树上,然后遍历这颗线段树同时处理标记即可。
从某种角度,可以理解为标记永久化。
这样,就将撤销任意一次变为只撤销上一次。(还是要撤销)
要求:用于维护的数据结构支持撤销上一操作,复杂度不能均摊(因为要撤销)
时间复杂度:比正常多一个log。

例题1:八纵八横

题目链接:[HAOI2017]八纵八横

线段树分治&线性基 模板题。

给一棵树,支持加边,删边,修改边权,并询问最大异或和的环。
类似xor和路径,询问结果就是所有环的最大异或和,使用线性基。
修改可以看做删除+插入。由于线性基不支持删除,所以使用线段树分治。
可以用并查集维护树。

代码:

#include <stdio.h> 
#include <bitset> 
#include <string.h> 
#include <vector> 
using namespace std;
int fr[503],ne[1003],v[1003],w[1003],bs = 0,len,ff[503];
bool bk[1003],ca[1003];
bitset < 1005 > bi[2003],jl[503],ji[1003],ans[1003];
void addb(int a, int b, int c) {
    v[bs] = b;
    w[bs] = c;
    ne[bs] = fr[a];
    fr[a] = bs++;
}
void dfs1(int u, int f) {
    for (int i = fr[u]; i != -1; i = ne[i]) {
        if (v[i] == f) continue;
        jl[v[i]] = jl[u] ^ bi[w[i]];
        dfs1(v[i], u);
    }
}
int getv(int x) {
    if (x == ff[x]) return x;
    ff[x] = getv(ff[x]);
    return ff[x];
}
bool merge(int x, int y) {
    x = getv(x);
    y = getv(y);
    if (x == y) return false;
    ff[x] = y;
    return true;
}
void fuz(bitset < 1005 > &x, char zf[1005]) {
    x = 0;
    int n = strlen(zf);
    if (n > len) len = n;
    for (int i = 0; i < n; i++) {
        if (zf[i] == '1') x[n - 1 - i] = 1;
    }
}
void getans(bitset < 1005 > &x) {
    x = 0;
    for (int i = len - 1; i >= 0; i--) {
        if (x[i] == 0 && bk[i]) x ^= ji[i];
    }
}
int st[1005],tp = 0;
void insert(bitset < 1005 > x) {
    for (int i = len - 1; i >= 0; i--) {
        if (x[i]) {
            if (!bk[i]) {
                bk[i] = true;
                ji[i] = x;
                st[tp++] = i;
                break;
            } else x ^= ji[i];
        }
    }
}
struct SJd {
    int x,y,z;
    SJd() {}
    SJd(int X, int Y, int Z) {
        x = X;y = Y;z = Z;
    }
};
vector < SJd > ve[8005];
void xiugai(int i, int l, int r, int L, int R, SJd x) {
    if (R <= l || r <= L) return;
    if (L <= l && r <= R) {
        ve[i].push_back(x);
        return;
    }
    int m = (l + r) >> 1;
    xiugai(i << 1, l, m, L, R, x);
    xiugai((i << 1) | 1, m, r, L, R, x);
}
int wz[2003];
void dfs3(int i, int l, int r) {
    int la = tp;
    for (int j = 0; j < ve[i].size(); j++) insert(bi[ve[i][j].z] ^ jl[ve[i][j].x] ^ jl[ve[i][j].y]);
    if (l + 1 == r) {
        if (wz[l] != -1) getans(ans[wz[l]]);
    } else {
        int m = (l + r) >> 1;
        dfs3(i << 1, l, m);
        dfs3((i << 1) | 1, m, r);
    }
    for (int i = la; i < tp; i++) bk[st[i]] = false;
    tp = la;
}
char zf[1003],ch[20];
int tx[1003],ty[1003],la[1003],tm[1003];
int ll[2003],rr[2003],X[2003],Y[2003],Z[2003];
SJd xg[2003];
int main() {
    int n,m,q;
    scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= n; i++) {
        fr[i] = -1;ff[i] = i;
    }
    for (int i = 0; i < m; i++) {
        int x,y;
        scanf("%d%d%s", &x, &y, zf);
        fuz(bi[i], zf);
        if (merge(x, y)) {
            addb(x, y, i);addb(y, x, i);
        } else tx[i] = x,
        ty[i] = y;
    }
    dfs1(1, 0);
    int ss = 0,ks = 0,xs = 0;
    for (int i = 1; i <= q; i++) {
        scanf("%s", ch);
        if (ch[0] == 'A') {
            int x,y;
            scanf("%d%d%s", &x, &y, zf);
            ks += 1;ss += 1;
            wz[ss] = i;
            fuz(bi[m + i], zf);
            la[ks] = ss;tm[ks] = i;
            X[ks] = x;Y[ks] = y;
        } else if (ch[0] == 'C' && ch[1] == 'a') {
            int k;
            scanf("%d", &k);
            ss += 1;wz[ss] = i;
            xg[xs] = SJd(X[k], Y[k], m + tm[k]);
            ll[xs] = la[k];rr[xs] = ss;
            xs += 1;
            ca[k] = true;
        } else {
            int k;
            scanf("%d%s", &k, zf);
            fuz(bi[m + i], zf);
            ss += 1;wz[ss] = -1;
            xg[xs] = SJd(X[k], Y[k], m + tm[k]);
            ll[xs] = la[k];rr[xs] = ss;
            xs += 1;wz[ss] = i;
            tm[k] = i;la[k] = ss;
        }
    }
    for (int i = 0; i < m; i++) {
        if (tx[i]) insert(bi[i] ^ jl[tx[i]] ^ jl[ty[i]]);
    }
    tp = 0;
    for (int k = 1; k <= ks; k++) {
        if (ca[k]) continue;
        xg[xs] = SJd(X[k], Y[k], m + tm[k]);
        ll[xs] = la[k];
        rr[xs] = ss + 1;
        xs += 1;
    }
    for (int i = 0; i < xs; i++) xiugai(1, 0, ss + 1, ll[i], rr[i], xg[i]);
    dfs3(1, 0, ss + 1);
    for (int i = 0; i <= q; i++) {
        bool zz = false;
        for (int j = len - 1; j >= 0; j--) {
            if (ans[i][j] == 1) {
                printf("1");
                zz = true;
            } else if (zz) printf("0");
        }
        printf("\n");
    }
    return 0;
}

例题2:时空旅行

题目链接:[CTSC2016]时空旅行

题意:
在一棵树上,每个节点代表一个集合,一些元素存在这个集合之中,
每个节点上的集合,是由父亲的先复制下来,然后添加或删除1个元素,成为一个新的集合。
每个元素有\((x,y,z,c)\)四个值,\((y,z)\)没用,就是两个\((x,c)\)
每次给出树上一个点,以及一个X,要求出这个节点所有元素的\(min((X−x_i)^2+C_i)\)
要求复杂度\(O(nlogn)\)

首先,看到\(min((X−x_i)^2+C_i)\),很自然想到斜率优化。
\(y_i=x_i^2+C_i,y_i=x_i,k=2X,b=y-kx,ans=b+X^2\)
那么,相当于,每个节点的凸包,是由父亲的先复制下来,然后添加或删除1个点,成为一个新的凸包。

可以发现,这是一个版本树,遍历一下,就变成序列上的了。而且也是单点询问。
那么,我们考虑使用上题的方法。
会发现两个问题:
1、凸包添加删除是均摊的。
2、无法保证x递增。
但是,我们可以按x递增的顺序在线段树上添加凸包,使每个节点的x递增。
这时,由于各个节点的凸包互不影响(不像上题的线性基是互相影响的),我们可以对于线段树上的叶子节点暴力找所有祖先进行计算。
按照斜率递减计算,即可用单调栈维护凸包,时空复杂度\(O(nlogn)\),卡卡空间就能过。

代码:

#include <stdio.h>
#include <vector>
#include <stdlib.h>
#define ll long long
#define inf 99999999999999999
void read(ll &x)
{
    int f=1;x=0;
    char s=getchar();
    while(s<'0'||s>'9')
    {
        if(s=='-')f=-1;
        s=getchar();
    }
    while(s>='0'&&s<='9')
    {
        x=x*10+s-'0';
        s=getchar();
    }
    x*=f;
}
void read(int &x)
{
    int f=1;x=0;
    char s=getchar();
    while(s<'0'||s>'9')
    {
        if(s=='-')f=-1;
        s=getchar();
    }
    while(s>='0'&&s<='9')
    {
        x=x*10+s-'0';
        s=getchar();
    }
    x*=f;
}
using namespace std;
struct point
{
    int x;
    ll y;
    point(){}
    point(int X,ll Y)
    {
        x=X;y=Y;
    }
};
point pt[500010];
int cmp(int ia,int ib,int ic,int id)
{
    point a=pt[ia],b=pt[ib],c=pt[ic],d=pt[id];
    if(1ll*(b.y-a.y)*(d.x-c.x)<1ll*(d.y-c.y)*(b.x-a.x))
        return -1;
    else if(1ll*(b.y-a.y)*(d.x-c.x)>1ll*(d.y-c.y)*(b.x-a.x))
        return 1;
    else
        return 0;
}
int cmp(int ia,int ib,int k)
{
    point a=pt[ia],b=pt[ib];
    if(b.y-a.y<1ll*k*(b.x-a.x))
        return -1;
    else if(b.y-a.y>1ll*k*(b.x-a.x))
        return 1;
    else
        return 0;
}
#define tubao vector<int>
void insert(tubao &tb,int a)
{
    int sl=tb.size();
    if(sl>0&&pt[tb[sl-1]].x==pt[a].x)
    {
        if(pt[a].y<pt[tb[sl-1]].y)
        {
            tb.pop_back();
            sl-=1;
        }
        else return;
    }
    while(sl>=2&&cmp(tb[sl-2],tb[sl-1],tb[sl-1],a)!=-1)
    {
        tb.pop_back();
        sl-=1;
    }
    tb.push_back(a);
}
ll findb(tubao &tb,int k)
{
    int sl=tb.size();
    if(sl==0)return inf;
    while(sl>=2&&cmp(tb[sl-2],tb[sl-1],k)!=-1)
    {
        tb.pop_back();
        sl-=1;
    }
    return pt[tb[sl-1]].y-1ll*k*pt[tb[sl-1]].x;
}
ll find(tubao &tb,int X)
{
    return findb(tb,X*2)+1ll*X*X;
}
tubao ve[2097160];int wz[1000010];
ll findans(int u,int X)
{
    ll zx=inf;
    while(u>0)
    {
        ll t=find(ve[u],X);
        if(t<zx)zx=t;
        u/=2;
    }
    return zx;
}
void jianshu(int i,int l,int r)
{
    if(l+1==r)
    {
        wz[l]=i;
        return;
    }
    int m=(l+r)>>1;
    jianshu(i<<1,l,m);
    jianshu((i<<1)|1,m,r);
}
void insert(int i,int l,int r,int L,int R,int x)
{
    if(r<=L||R<=l)
        return;
    if(L<=l&&r<=R)
    {
        insert(ve[i],x);
        return;
    }
    int m=(l+r)>>1;
    insert(i<<1,l,m,L,R,x);
    insert((i<<1)|1,m,r,L,R,x);
}
int fr[500010],ne[500010],v[500010],bs=0;
void addb(int a,int b)
{
    v[bs]=b;
    ne[bs]=fr[a];
    fr[a]=bs++;
}
int lx[500010],id[500010],zx[500010];
int wl[500010],wr[500010],la[500010],tm=0;
void dfs(int u)
{
    wl[u]=tm++;
    for(int i=fr[u];i!=-1;i=ne[i])
        dfs(v[i]);
    wr[u]=tm++;
}
struct SCz
{
    int lx,i;
    SCz(){}
    SCz(int Lx,int I)
    {
        lx=Lx;i=I;
    }
};
vector<SCz> cz[1000010];
struct SPx
{
    int x,l,r;
    SPx(){}
    SPx(int X,int L,int R)
    {
        x=X;l=L;r=R;
    }
};
SPx px[1000010];
int cmp2(const void*a,const void*b)
{
    return zx[((SPx*)a)->x]-zx[((SPx*)b)->x];
}
struct SXw
{
    int x,s,i;
    SXw(){}
    SXw(int X,int S,int I)
    {
        x=X;s=S;i=I;
    }
};
SXw xw[500010];
int cmp3(const void*a,const void*b)
{
    return ((SXw*)b)->x-((SXw*)a)->x;
}
ll ans[500010];
int main()
{
    int n,m,s=0;ll c0;
    scanf("%d%d%lld",&n,&m,&c0);
    for(int i=0;i<n;i++)
        fr[i]=-1;
    for(int i=1;i<n;i++)
    {
        int y,z,a;
        read(lx[i]);
        if(lx[i]==0)
        {
            int x;ll c;
            read(a);read(id[i]);read(x);read(y);read(z);read(c);
            pt[id[i]]=point(x,1ll*x*x+c);
            zx[id[i]]=x;
        }
        else
        {
            read(a);
            read(id[i]);
        }
        addb(a,i);
    }
    dfs(0);
    for(int i=1;i<n;i++)
    {
        if(lx[i]==0)cz[wr[i]].push_back(SCz(1,id[i]));
        else cz[wl[i]].push_back(SCz(1,id[i]));
    }
    for(int i=1;i<n;i++)
    {
        if(lx[i]==0)cz[wl[i]].push_back(SCz(0,id[i]));
        else cz[wr[i]].push_back(SCz(0,id[i]));
    }
    pt[0]=point(0,c0);jianshu(1,0,tm);
    insert(1,0,tm,0,tm,0);
    for(int i=0;i<=tm;i++)
    {
        for(int j=0;j<cz[i].size();j++)
        {
            int lx=cz[i][j].lx,x=cz[i][j].i;
            if(lx==0)
                la[x]=i;
            else
                px[s++]=SPx(x,la[x],i);
        }
    }
    qsort(px,s,sizeof(SPx),cmp2);
    for(int i=0;i<s;i++)
        insert(1,0,tm,px[i].l,px[i].r,px[i].x);
    for(int i=0;i<m;i++)
    {
        int s,x;
        read(s);read(x);
        xw[i]=SXw(x,s,i);
    }
    qsort(xw,m,sizeof(SXw),cmp3);
    for(int i=0;i<m;i++)
        ans[xw[i].i]=findans(wz[wl[xw[i].s]],xw[i].x);
    for(int i=0;i<m;i++)
        printf("%lld\n",ans[i]);
    return 0;
}

类型二

单点操作,区间询问。

转载于:https://www.cnblogs.com/lnzwz/p/11614311.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值