路径fuzz的一种想法(脚本试验扫了一晚上,扫出某大厂商两个漏洞)

参考了之前的路径fuzz的工具,例如猪猪侠的工具:https://github.com/ring04h/weakfilescan,这个工具主要就是先爬取网页的路径,然后再对每个路径进行fuzz,这种思路跟以前的路径fuzz的差别就在于可获取更多存在的链接进行fuzz;而不单单只是进行对根目录或者某个路径进行字典加载。


但上面的工具有一些缺点就是可能会导致一些网址会重复爬取,爬取的链接也不是很全,默认好像是设置3层。


参考了以上的有缺点,也造了一个轮子。我的做法就是先对网站的url链接进行爬取,获取的链接可以有很多用处,之前主要是用于倒进扫描器进行一些sql注入,url跳转和命令注入等的扫描。


扫描器的原理基本就是:先对爬取的url进行去重,然后把url链接倒进一个修改过的轮子(https://github.com/Mosuan/FileScan),这个fuzz路径的扫描器可以对每个扫描的路径都能扫描,并且是进行多个状态进行比对。例如 www.abc.com/a/b,扫描的路径就会有www.abc.com,www.abc.com/a,www.baidu.com/a/b。但爬取的url路径可能会有重复的情况,例如www.abc.com/a/b/c,这时候也进行一个路径的去重,把之前扫描过一次的路径进行标记,下次扫描的时进行状态的比对,结果主要存在mongodb中。


效果图:



目前存在的情况是由于一些路径没有进行规则的匹配,还是存在一点误报的情况。好东西不是一蹴而就,需要不停地进行优化,这里分享了一下自己在路径fuzz上面的看法。


更新:

进行了优化,一是当命中规则时会再一次进行返回包长度的检验;二是当命中规则数超过一个伐值,会舍弃这些数据。

这样误报率一下子下降,准确率提高了很多。



  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
以下是一个模糊PID温度控制算法的简单示例源代码: ```python import numpy as np import skfuzzy as fuzz from skfuzzy import control as ctrl # 创建输入和输出变量 temperature = ctrl.Antecedent(np.arange(0, 101, 1), 'temperature') output = ctrl.Consequent(np.arange(0, 101, 1), 'output') # 定义模糊集和成员函数 temperature['cold'] = fuzz.trimf(temperature.universe, [0, 0, 50]) temperature['medium'] = fuzz.trimf(temperature.universe, [10, 50, 90]) temperature['hot'] = fuzz.trimf(temperature.universe, [50, 100, 100]) output['low'] = fuzz.trimf(output.universe, [0, 0, 50]) output['medium'] = fuzz.trimf(output.universe, [10, 50, 90]) output['high'] = fuzz.trimf(output.universe, [50, 100, 100]) # 设定规则 rule1 = ctrl.Rule(temperature['cold'], output['high']) rule2 = ctrl.Rule(temperature['medium'], output['medium']) rule3 = ctrl.Rule(temperature['hot'], output['low']) # 创建控制系统 temperature_ctrl = ctrl.ControlSystem([rule1, rule2, rule3]) temperature_simulation = ctrl.ControlSystemSimulation(temperature_ctrl) # 模拟温度 temperature_simulation.input['temperature'] = 70 temperature_simulation.compute() # 获取输出 output_value = temperature_simulation.output['output'] print("温度控制输出:", output_value) ``` 该代码使用了`scikit-fuzzy`库来实现模糊PID温度控制算法。首先创建了输入和输出变量,然后定义了模糊集和成员函数。接着设定了规则,根据输入的温度值进行模拟计算,并获取输出结果。最后打印出温度控制输出。 请注意,这只是一个简单示例,实际的模糊PID温度控制算法可能更加复杂和完善,需要根据具体的控制需求进行调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZZJX7

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值