Tensorflow-gpu、keras、CUDA、cuDNN安装

本文详细介绍了如何在Windows环境下配置GPU支持的TensorFlow和Keras环境。首先,确认了GeForce GTX1650显卡兼容的CUDA版本为10.1和cuDNN版本为7.6。然后,通过conda安装了这两个组件,接着使用pip安装了tensorflow-gpu 2.2.0和keras 2.3.1。最后,通过代码验证了GPU环境的正确配置和TensorFlow-GPU的可用性。
摘要由CSDN通过智能技术生成

版本信息

我的电脑显卡是GeForce GTX1650的

cuda版本10.1

cudnn版本7.6

python3.7

tensorflow-gpu 2.2.0

keras2.3.1

(提一下我安装的前提是已经装好了anaconda和python) 

网上可以查到自己的显卡版本以及对应的cuda等版本(以后有时间补上查看方法) 

查看tensorflow和keras、python版本的对应关系

 在tensorflow官网查看对应关系:在 Windows 环境中从源代码构建  |  TensorFlow (google.cn)

cuda安装

如果之前已经本地安装过了CUDA,那么在具体使用中就只需要安装cudatoolkit,不需要再下载整个CUDA。

conda install cudatoolkit=10.1

cudnn安装

conda install cudnn=7.6

此处敲y即可 

安装完成 

tensorflow-gpu安装

CUDA和cuDNN是使用conda命令下载,Tensorflow和keras则是通过pip命令下载

pip install tensorflow-gpu==2.2.0

tensorflow的gpu版本安装成功,检查是否可用:

 way1:

import tensorflow as tf
print(tf.__version__)
tf.test.is_gpu_available()

结果如下图所示,有true即为可用

 

 way2:

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

结果如下入所示

安装keras 

 使用pip命令安装keras库

pip install keras==2.3.1

查看是否安装成功: 

import keras
keras.__version__

keras库的版本号为2.3.1,安装成功 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值