版本信息
我的电脑显卡是GeForce GTX1650的
cuda版本10.1
cudnn版本7.6
python3.7
tensorflow-gpu 2.2.0
keras2.3.1
(提一下我安装的前提是已经装好了anaconda和python)
网上可以查到自己的显卡版本以及对应的cuda等版本(以后有时间补上查看方法)
查看tensorflow和keras、python版本的对应关系
在tensorflow官网查看对应关系:在 Windows 环境中从源代码构建 | TensorFlow (google.cn)
cuda安装
如果之前已经本地安装过了CUDA,那么在具体使用中就只需要安装cudatoolkit,不需要再下载整个CUDA。
conda install cudatoolkit=10.1
cudnn安装
conda install cudnn=7.6
此处敲y即可
安装完成
tensorflow-gpu安装
CUDA和cuDNN是使用conda命令下载,Tensorflow和keras则是通过pip命令下载
pip install tensorflow-gpu==2.2.0
tensorflow的gpu版本安装成功,检查是否可用:
way1:
import tensorflow as tf
print(tf.__version__)
tf.test.is_gpu_available()
结果如下图所示,有true即为可用
way2:
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
结果如下入所示
安装keras
使用pip命令安装keras库
pip install keras==2.3.1
查看是否安装成功:
import keras
keras.__version__
keras库的版本号为2.3.1,安装成功