B - Linear Algebra Test 、Gym - 101502B

本文通过一道编程竞赛题目介绍如何利用C++中的map数据结构来解决问题。文章提供了一种使用两个map分别记录x和y坐标出现次数的方法,并计算特定条件下的配对数量,最后给出了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目简介易懂,附题目链接:https://cn.vjudge.net/contest/250938#problem/B

做题的时候,一直想用map来做,但是苦于只知其名不懂其意,所以最后就放弃了,挺可惜的,一定要把这个学会,太实用了!

好懒,不愿意写了,直接附大佬链接吧,不过这个不是用map写的,是用二分查找优化,挺容易理解的,啊啊啊啊啊还是想用map嘤嘤嘤~ 通向大佬的神奇一击

还有一种用map的方法写的,简单易懂,不解释啦

​
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <map>

using namespace std;
typedef long long ll;
int main()
{
    ll t;
    ll n, cnt, x, y;
    scanf("%lld", &t);
    while(t--)
    {
        map<ll, ll> a;//存x;
        map<ll, ll> b;//存y;
        cnt = 0;
        scanf("%lld", &n);
        for(int i = 1; i <= n; i++)
        {
            scanf("%lld%lld", &x, &y);
            if(b.count(x))//b中对应x出现过的话,加上出现过的次数;
            {
                cnt += b[x];
            }
            if(a.count(y))//a中对应y出现过的话,加上出现过的次数;
            {
                cnt += a[y];
            }
            a[x]++;
            b[y]++;
        }
        printf("%lld\n", cnt);
    }
    return 0;
}

​

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值