文章目录 前言 一、数学建模与理论基础 奈奎斯特-香农采样定理 核心条件 物理意义 临界情况示例 二、非理想采样的实际考量 零阶保持(ZOH)采样 孔径效应 三、多维抽样理论 图像采样(二维抽样) 实际案例 视频采样(三维抽样) 四、抽样误差与补偿技术 混叠效应分析 工程解决方案 抗混叠滤波器设计(Butterworth/Chebyshev) 量化噪声与过采样 五、现代抽样技术演进 压缩感知(Compressed Sensing) Σ-Δ调制 六、典型参数对照表 七、工程实践要点 时钟抖动影响 多速率信号处理 前言 抽样是将连续时间信号转换为离散时间信号的关键过程,其数学本质是用脉冲序列对连续信号进行调制。以下从多个维度深入解析: 一、数学建模与理论基础 理想抽样模型: 奈奎斯特-香农采样定理 核心条件 核心条件:若信号带宽 𝐵则需 𝑓𝑠>2𝐵 物理意义 物理意义:频谱周期延拓时不发生混叠 临界情况示例 语音信号(4kHz带宽)→ 电话系统采样率8kHz 音频CD(20kHz带宽)→ 44.1kHz采样率 二、非理想采样的实际考量 零阶保持(ZOH)采样 孔径效应