八皇后 -二稿(课程设计)

本文介绍了使用C语言解决经典的八皇后问题,探讨了如何在8x8棋盘上放置8个皇后,使得任意两个皇后都不在同一行、同一列或同一斜线上。详细阐述了算法思路和代码实现。
摘要由CSDN通过智能技术生成
#include<stdio.h>
#include<stdlib.h>                  //用abs函数
#include<time.h>                    //用clock()函数进行计时
#include<windows.h>                 //用Sleep函数进行显示
#define inf -1                      //初始化数值
#define queen 8                     //8个皇后
int a[queen],cas;                   //a[]--数组,cas--答案个数
bool check(int i,int j);            //判断皇后放置是否合法
void print();                       //打印
void _memset();                     //初始化
void _queen();                      //非递归回溯
int main()
{
    int t1=clock();
    _memset();
    _queen();
    int t2=clock();                 //计时处理
    printf("%d\n",t2-t1);
    return 0;
}
void _memset()                      //初始化处理
{
    for(int i=0;i<queen;i++)
        a[i]=inf;
}
bool check(int row,int col)         //加判断
{
    for(int j=0;j<col;j++)
    {
        if(row==a[j]||(abs(row-a[j])=
八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。   高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。   对于八皇后问题的实现,如果结合动态的图形演示,则可以使算法的描述更形象、更生动,使教学能产生良好的效果。下面是用Turbo C实现的八皇后问题的图形程序,能够演示全部的92组解。八皇后问题动态图形的实现,主要应解决以下两个问题。   (1)回溯算法的实现   (a)为解决这个问题,我们把棋盘的横坐标定为i,纵坐标定为j,i和j的取值范围是从1到8。当某个皇后占了位置(i,j)时,在这个位置的垂直方向、水平方向和斜线方向都不能再放其它皇后了。用语句实现,可定义如下三个整型数组:a[8],b[15],c[24]。其中:   a[j-1]=1 第j列上无皇后   a[j-1]=0 第j列上有皇后   b[i+j-2]=1 (i,j)的对角线(左上至右下)无皇后   b[i+j-2]=0 (i,j)的对角线(左上至右下)有皇后   c[i-j+7]=1 (i,j)的对角线(右上至左下)无皇后   c[i-j+7]=0 (i,j)的对角线(右上至左下)有皇后   (b)为第i个皇后选择位置的算法如下:   for(j=1;j<=8;j++) /*第i个皇后在第j行*/   if ((i,j)位置为空)) /*即相应的三个数组的对应元素值为1*/   {占用位置(i,j) /*置相应的三个数组对应的元素值为0*/   if i<8   为i+1个皇后选择合适的位置;   else 输出一个解   }   (2)图形存取   在Turbo C语言中,图形的存取可用如下标准函数实现:   size=imagesize(x1,y1,x2,y2) ;返回存储区域所需字节数。   arrow=malloc(size);建立指定大小的动态区域位图,并设定一指针arrow。   getimage(x1,y1,x2,y2,arrow);将指定区域位图存于一缓冲区。   putimage(x,y,arrow,copy)将位图置于屏幕上以(x,y)左上角的区域。   (3)程序清单如下   #include <graphics.h>   #include <stdlib.h>   #include <stdio.h>   #include <dos.h>   char n[3]={'0','0'};/*用于记录第几组解*/   int a[8],b[15],c[24],i;   int h[8]={127,177,227,277,327,377,427,477};/*每个皇后的行坐标*/   int l[8]={252,217,182,147,112,77,42,7}; /*每个皇后的列坐标*/   void *arrow;   void try(int i)   {int j;   for (j=1;j<=8;j++)   if (a[j-1]+b[i+j-2]+c[i-j+7]==3) /*如果第i列第j行为空*/   {a[j-1]=0;b[i+j-2]=0;c[i-j+7]=0;/*占用第i列第j行*/   putimage(h[i-1],l[j-1],arrow,COPY_PUT);/*显示皇后图形*/   delay(500);/*延时*/   if(i<8) try(i+1);   else /*输出一组解*/   {n[1]++;if (n[1]>'9') {n[0]++;n[1]='0';}   bar(260,300,390,340);/*显示第n组解*/   outtextxy(275,300,n);   delay(3000);   }   a[j-1]=1;b[i+j-2]=1;c[i-j+7]=1;   putimage(h[i-1],l[j-1],arrow,XOR_PUT);/*消去皇后,继续寻找下一组解*/   delay(500);   }}   int main(void)   {int gdrive=DETECT,gmode,errorcode;   unsigned int size;   initgraph(&gdrive,&gmode,"");   errorcode=graphresult();   if (errorcode!=grOk)   {printf("Graphics error\n");exit(1);}   rectangle(50,5,100,40);   rectangle(60,25,90,33);   /* 画皇冠 */   line(60,28,90,28);line(60,25,55,15);   line(55,15,68,25);line(68,25,68,10);   line(68,10,75,25);line(75,25,82,10);   line(82,10,82,25);line(82,25,95,15);   line(95,15,90,25);   size=imagesize(52,7,98,38); arrow=malloc(size);   getimage(52,7,98,38,arrow); /* 把皇冠保存到缓冲区 */   clearviewport();   settextstyle(TRIPLEX_FONT, HORIZ_DIR, 4);   setusercharsize(3, 1, 1, 1);   setfillstyle(1,4);   for (i=0;i<=7;i++) a=1;   for (i=0;i<=14;i++) b=1;   for (i=0;i<=23;i++) c=1;   for (i=0;i<=8;i++) line(125,i*35+5,525,i*35+5); /* 画棋盘 */   for (i=0;i<=8;i++) line(125+i*50,5,125+i*50,285);   try(1); /* 调用递归函数 */   delay(3000);   closegraph();   free(arrow);   }   二、循环实现 Java   /*   * 8皇后问题:   *   * 问题描述:   * 在一个8×8的棋盘里放置8个皇后,要求每个皇后两两之间不相冲突   *(在每一横列,竖列,斜列只有一个皇后)。   *   * 数据表示:   * 用一个 8 位的 8 进制数表示棋盘上皇后的位置:   * 比如:45615353 表示:   * 第0列皇后在第4个位置   * 第1列皇后在第5个位置   * 第2列皇后在第6个位置   * 。。。   * 第7列皇后在第3个位置   *   * 循环变量从 00000000 加到 77777777 (8进制数)的过程,就遍历了皇后所有的情况   * 程序中用八进制数用一个一维数组 data[] 表示   *   * 检测冲突:   * 横列冲突:data == data[j]   * 斜列冲突:(data+i) == (data[j]+j) 或者 (data-i) == (data[j]-j)   *   * 好处:   * 采用循环,而不是递规,系统资源占有少   * 可计算 n 皇后问题   * 把问题线性化处理,可以把问题分块,在分布式环境下用多台计算机一起算。   *   * ToDo:   * 枚举部分还可以进行优化,多加些判断条件速度可以更快。   * 输出部分可以修改成棋盘形式的输出   *   * @author cinc 2002-09-11   *   */   public class Queen {   int size;   int resultCount;   public void compute ( int size ) {   this.size = size;   resultCount = 0;   int data[] = new int[size];   int count; // 所有可能的情况个数   int i,j;   // 计算所有可能的情况的个数   count = 1;   for ( i=0 ; i<size ; i++ ) {   count = count * size;   }   // 对每一个可能的情况   for ( i=0 ; i<count ; i++ ) {   // 计算这种情况下的棋盘上皇后的摆放位置,用 8 进制数表示   // 此处可优化   int temp = i;   for ( j=0 ; j<size ; j++ ) {   data [j] = temp % size;   temp = temp / size;   }   // 测试这种情况是否可行,如果可以,输出   if ( test(data) )   output( data );   }   }   /*   * 测试这种情况皇后的排列是否可行   *   */   public boolean test( int[] data ) {   int i,j;   for ( i=0 ; i<size ; i++ ) {   for ( j=i+1 ; j<size ; j++ ) {   // 测试是否在同一排   if ( data == data[j] )   return false;   // 测试是否在一斜线   if ( (data+i) == (data[j]+j) )   return false;   // 测试是否在一反斜线   if ( (data-i) == (data[j]-j) )   return false;   }   }   return true;   }   /*   * 输出某种情况下皇后的坐标   *   */   public void output ( int[] data ) {   int i;   System.out.print ( ++resultCount + ": " );   for ( i=0 ; i<size ; i++ ) {   System.out.print ( "(" + i + "," + data + ") " );   }   System.out.println ();   }   public static void main(String args[]) {   (new Queen()).compute( 8 );   }   }   三、八皇后问题的Qbasic版的解决方案   10 I = 1   20 A(I) = 1   30 G = 1   40 FOR K = I - 1 TO 1 STEP -1   50 IF A(I) = A(K) THEN 70   60 IF ABS(A(I) - A(K)) <> I - K THEN 90   70 G = 0   80 GOTO 100   90 NEXT K   100 IF I <> 8 THEN 180   110 IF G = 0 THEN 180   120 FOR L = 1 TO 8   130 PRINT USING “##”; A(L);   140 NEXT L   150 PRINT “*”;   160 M = M + 1   170 IF M MOD 3 = 0 THEN PRINT   180 IF G = 0 THEN 230   190 IF I = 8 THEN 230   200 I = I + 1   210 A(I) = 1   220 GOTO 30   230 IF A(I) < 8 THEN 270   240 I = I - 1   250 IF I = 0 THEN 290   260 GOTO 230   270 A(I) = A(I) + 1   280 GOTO 30   290 PRINT   300 PRINT “SUM=”; USING “##”; M;   310 PRINT   320 END   四、八皇后问题的高效解法-递归版   //8 Queen 递归算法   //如果有一个Q 为 chess=j;   //则不安全的地方是 k行 j位置,j+k-i位置,j-k+i位置   class Queen8{   static final int QueenMax = 8;   static int oktimes = 0;   static int chess[] = new int[QueenMax];//每一个Queen的放置位置   public static void main(String args[]){   for (int i=0;i<QueenMax;i++)chess=-1;   placequeen(0);   System.out.println("\n\n\n八皇后共有"+oktimes+"个解法 made by yifi 2003");   }   public static void placequeen(int num){ //num 为现在要放置的行数   int i=0;   boolean qsave[] = new boolean[QueenMax];   for(;i<QueenMax;i++) qsave=true;   //下面先把安全位数组完成   i=0;//i 是现在要检查的数组值   while (i<num){   qsave[chess]=false;   int k=num-i;   if ( (chess+k >= 0) && (chess+k < QueenMax) ) qsave[chess+k]=false;   if ( (chess-k >= 0) && (chess-k < QueenMax) ) qsave[chess-k]=false;   i++;   }   //下面历遍安全位   for(i=0;i<QueenMax;i++){   if (qsave==false)continue;   if (num<QueenMax-1){   chess[num]=i;   placequeen(num+1);   }   else{ //num is last one   chess[num]=i;   oktimes++;   System.out.println("这是第"+oktimes+"个解法 如下:");   System.out.println("第n行: 1 2 3 4 5 6 7 8");   for (i=0;i<QueenMax;i++){   String row="第"+(i+1)+"行: ";   if (chess==0);   else   for(int j=0;j<chess;j++) row+="--";   row+="++";   int j = chess;   while(j<QueenMax-1){row+="--";j++;}   System.out.println(row);   }   }   }   //历遍完成就停止   }   }
二、 算法思想: 采用回溯法解决八皇后问题。从第一行开始,放第一个皇后,放好皇后以后,她所在的行,列和对角线上的每一个位置就是她的管辖范围,别的皇后没有权利干涉,否则死无藏身之地。 然后,第二个皇后,从第二行的第一列开始判断所在的位置是否是别的皇后的管辖范围,找到第一个还没有被占据的位置,则将其占为己有。暂时,该皇后停在该位置。然后,第三个到第八个皇后依次从第三行,第四行,… ,到第八行的第一列开始寻求自己的位置。假如到第i个皇后时,已经没有任何位置可选,则第i-1个皇后必须往后移动进行协调,同样,假如第i-1个皇后往后移动时没有找到空位置,则第i-2个皇后必须往后移动,进行协调,当找到空位置时,暂时停下,将下一个皇后重新从第一列开始寻找空位置。重复上述过程,直到所有皇后都停下来。则得到了第一个解。要想产生所有的解,则当产生第一个解以后,第八个皇后往后移动,找下一个可以利用的空位置,找不到,则第七个皇后必须往后移动,若找到空位置则停下,第八个皇后从第八行第一列重新试探,找到空位置。一直这样,直到第一个皇后将第一行遍历完。得到的解就是所有解。 三、 概要设计: ***************类型及相关变量定义***************** //位置信息类型 typedef struct { int row; int col; }PosType; //皇后类型 typedef struct Queen{ PosType pos; int number; //第几号皇后 }QueenType; //栈节点类型 typedef struct Note{ QueenType queen; struct Note *next; }NoteType; //棋盘,某一位置chessboard[i][j]上有皇后,则该位的值变为皇后序号。同样,该皇后的势 //力范围内的位置上的值全部变为该皇后的序号。 int chessboard[8][8]; //结果集,共92种解,每一种解中记录8个位置信息。 PosType ResultSet[92][8]; //定义一个栈,保存信息 Typedef struct{ NoteType head; Int size; }QueenStack; //定义一个栈,存放皇后信息 QueenStack qstack; *************相关操作**************** //初始化棋盘,开始时每个位置上都没有皇后,值全为0;并给8个皇后编号。 void initChessboard(); //回溯求八皇后问题的所有解,皇后协调算法 void queenCoordinate(); //输出所有解 void printResult();
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值