题目链接
题目描述
我们要求找出具有下列性质数的个数(包含输入的自然数nn):
先输入一个自然数n(n≤1000),然后对此自然数按照如下方法进行处理:
1、不作任何处理;
2、在它的左边加上一个自然数,但该自然数不能超过原数的一半;
3、加上数后,继续按此规则进行处理,直到不能再加自然数为止.
以前我就做过这个题了,不过当时我还是不懂什么是递归,记忆化搜索。
然后做了一定量的dp题目之后我发现这个就是一个递推的过程。
首先给出我一开始做出来的记忆化搜索方法:
其实这个就是按照题目做就行了。
给我一个n,然后枚举所有1~n/2的情况作为它的左边。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e4+10;
ll dp[N];
ll dfs(ll n){
if(dp[n]){
return dp[n];
}
if(n==1){
return 1;
}
ll ans=1;
for(int i=1;i<=n/2;i++){
ans+=dfs(i);
}
return dp[n]=ans;
}
int main()
{
ll n;
scanf("%lld",&n);
ll ans=dfs(n);
printf("%lld\n",ans);
return 0;
}
还有一个做法就是推规律的。
1:1
2:2
3:2
4:4
5:4
6:6:
7:6
8:10
9:10
10:14
看上面的情况,后来发现首先奇数其实和他前一个偶数的情况是一样的。
然后如果是偶数那么它的答案就是:f[n-1]+f[n/2]。
就是这样罢了。
#include<bits/stdc++.h>
using namespace std;
const int N=1e3+10;
int dp[N];
void init(){
dp[0]=dp[1]=1;
for(int i=2;i<=1000;i++){
if(i&1){
dp[i]=dp[i-1];
}else{
dp[i]=dp[i-1]+dp[i/2];
}
}
}
int main()
{
init();
int n;
scanf("%d",&n);
printf("%d\n",dp[n]);
}