【EOJ】EOJ二月月赛

 2019.2月官方题解

D. 进制转换

签到题。

如果十进制数 x 在 k 进制下末尾恰好有 m 个 0 ,显然满足 x≡0(mod  k^m)且 x≢0(mod  k^(m+1) 。

而显然 x≡0(mod  k^m) 包含了 x≡0(mod  k^(m+1) ,直接就能算出来 [1,l] 的范围内有多少满足要求的数,差分一下即可。

当然它不甘为一道纯粹的签到,所以会计算过程直接 long long 会溢出。要注意处理的一些 tigs ,比如,判断的乘法变除法、加分变减法,均可以避免这个问题。

这个题目和前几天的一道CF题有神似的地方,其实他给的m和k异常大,我就觉得这个肯定会有爆long long 的情况出现,果不其然,大伙们都在这个精度上面败了。我就用for循环一次一次跑过去。


其实这个题目并不难做,首先k^m,右端点R/(k^m),观察有多少个k^m的倍数,因为不能再多一个k,所以就把  个数-个数/k。

差分一下。sum(R)-sum(L-1)即为答案。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e18+10;
int main(){
    int T;
    //test();
    scanf("%d",&T);
    while(T--){
        ll L,R,k,m,t,cntR,cntL,b=1,f=1,ans;
        scanf("%lld%lld%lld%lld",&L,&R,&k,&m);
        for(int i=1;i<=m;i++){          //防止,*k>1e18
            if(b>N/k){f=0;break;}
            b=b*k;
        }
        if(!f)printf("0\n");
        else{
            t=b*k;
            // printf("b=%lld \n",b);
            cntR=R/b;
            cntR=cntR-cntR/k;

            cntL=(L-1)/b;
            cntL=cntL-cntL/k;

            //printf("%lld %lld\n",cntL,cntR);
            ans=max(cntR-cntL,0ll);
            printf("%lld\n",ans);
        }
    }
    return 0;
}

F. 方差

最小方差(51Nod 1098)

比赛的时候推公式不认真,没有继续往下推下去,用的是double,结果有误差。

推公式,不然就会有精度损失。

\large \sigma^2=\frac{(a_{1}-\bar{a})^2+(a_{2}-\bar{a})^2+\cdots +(a_{m}-\bar{a})^2}{m}

左右同时乘上一个m^2,然后把分子展开:

\large m^2*\sigma^2=m[ (a_{1}^2+a_{2}^2+\cdots +a_{m}^2)-2\bar{a}(a_{1}+a_{2}+\cdots +a_{m})+m\bar{a}^2]

其中:

\large \bar{a}=\frac{a_{1}+a_{2}+\cdots+a_{m}}{m}

代入得到:

m^2*\sigma^2=m[ (a_{1}^2+a_{2}^2+\cdots +a_{m}^2)-2\frac{(a_{1}+a_{2}+\cdots +a_{m})^2}{m}+\frac{(a_{1}+a_{2}+\cdots +a_{m})^2}{m}]

m^2*\sigma^2=m[ (a_{1}^2+a_{2}^2+\cdots +a_{m}^2)-\frac{(a_{1}+a_{2}+\cdots +a_{m})^2}{m}]

m^2*\sigma^2=m(a_{1}^2+a_{2}^2+\cdots +a_{m}^2)-(a_{1}+a_{2}+\cdots +a_{m})^2

化到这里就差不多了,

每次都是维护ai^2,和区间内的和,预处理所有的前缀和。

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e6+10;
ll a[N],sum[N];
int main()
{
    int n,m;
    ll sigma=0,A=0,minz=0,Sum;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%lld",&a[i]);
    }
    sort(a+1,a+1+n);
    for(int i=1;i<=n;i++){
        sum[i]=sum[i-1]+a[i];
    }
    Sum=sum[m];
    for(int i=1;i<=m;i++){
        sigma+=(a[i])*(a[i]);
    }
    //printf("Sigma : %lf\n",sigma);
    sigma=sigma*m  -  Sum*Sum;
    //printf("Sigma : %lf\n",sigma);

    minz=sigma;
    for(int i=2;i<=n-m+1;i++){
        sigma=sigma+  Sum*Sum - m*a[i-1]*a[i-1];
        //printf("# 1 %lf\n",sigma);

        Sum=sum[i+m-1]-sum[i-1];

        sigma=sigma + m*a[i+m-1]*a[i+m-1] -Sum*Sum;
        //printf("#2 %lf\n",sigma);
        minz=min(minz,sigma);
    }
    printf("%lld\n",minz/m);
    return 0;
}
/*

6 2
1 2 3 4 5 6

*/

B——解题

设 ai 是从第 i 位到末位代表的整数,我们发现答案一定可以表达成 ai−aj (i<j)的形式。

例如,对于 1249,1000=1249−249,1200=1249−49,240=249−9。因此,问题可以转化为找到一个最小的 ai−aj,使得 ai−ajmodm=0。

要使 ai−aj mod m 为 0,只需要 ai mod m=aj mod m。要使 ai−aj 最小,首先需要 ai 最小,其次让 aj 最大。但是容易发现,在 ai 最小的情况下不可能有两个数 aj,ak 同时满足条件,否则 aj,ak 可以组成一个更小的解。因此,我们只要找到两个最小的 ai,aj,使其对 m 同余即可。注意,aj 是可以等于 0 的。

同时,因为抽屉原理,我们最多只要处理 m+1 个 ai 就能找到答案。


抽屉原理???

怎么才能想到这个抽屉原理呢,首先我们把枚举两个位置的L,R,写成从后往前保留多少位,

如“1234”      i=2  ->“234”

j=3,“34”

然后可以表示为ai-aj为从左到右,选择L,R两端点,然后可以被m整除。

因为其余位置会变成0,所以从后往前可以减少位数。

抽屉原理体现在  %m类,%m   共有m种情况,只要出现两个都是为%m后相同的数,肯定就是答案了,

ai-aj=0 (mod m)

然后化简一下变成:

ai  mod m = aj mod m

即两个在同余下相等即可。

所以就会找到答案。不要忽略有时候直接%m==0,此时就是该位置i到长度len。

还有一种情况就是m<10时候,在位置直接可以%m ==0。

三种情况分清楚,然后可以做题了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+100;
const int M=5e7+10;
char s[N];
int vis[M];
int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(NULL);
    ll Q,m;
    cin>>s>>Q;
    int len = strlen(s);
    while(Q--){
        cin>>m;
        for(int i=0;i<=m;i++){
            vis[i]=0;
        }
        ll t=1,tmp=0;
        for(int i=len-1;i>=0;i--){
            tmp=((s[i]-'0')*t+tmp)%m;
            t=t*10%m;

            if((s[i]-'0')%m==0&&m<10){
                printf("%d %d\n",i+1,i+1);break;
            }
            if(vis[tmp]){
                printf("%d %d\n",i+1,vis[tmp]);break;
            }
            if(!tmp){
                printf("%d %d\n",i+1,len);break;
            }
            vis[tmp]=i;
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值