使用python爬取招聘网站数据

本文介绍了在八九月求职高峰期,应届毕业生面对的就业挑战。针对招聘网站的复杂信息和反爬策略,作者分享了如何使用Python爬虫技术解决这一问题。通过设置常规HTTP请求头和利用代理IP,成功规避了网站的反爬措施,实现了批量抓取Boss直聘上的公司名、地点和工资等关键信息。同时提醒,爬取数据时要注意避免对服务器造成过大负担。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

八、九月份是一年中的求职高峰期,一大波应届毕业生涌入市场,加上疫情因素下,很多行业都没有那么景气,很多人应届生表示想要找到理想工作变得难上加难!
现在大家找工作都是通过各种招聘app,信息全部罗列出来,可是招聘信息有一些是错综复杂的。而且不能把全部的信息全部罗列出来,这样也让人很苦恼,所以今天我们就通过爬虫技术,为大家解决这个问题。首先我们的爬取目标是获取招聘信息,并批量把地点、 公司名、工资 、等详细资料做成文档。这里我们就以boss直聘为例。在获取数据之前简单的对网站进行了分析,该网站上的反爬主要有两点。1、 直接使用requests库,在不设置任何header的情况下,网站直接不返回数据。2、同一个ip连续访问多次,直接封掉ip。
为了解决这两个问题,最后经过研究,使用以下方法,可以有效解决。1、获取正常的 http请求头,并在requests请求时设置这些常规的http请求头。2、使用代理IP进行访问。代理IP的选择比较多,比如现在我们使用的亿牛云代理,简单实现过程如下:

#! -*- encoding:utf-8 -*-

    import requests
    import random

    # 要访问的目标页面
    targetUrl = "http://httpbin.org/ip"

    # 要访问的目标HTTPS页面
    # targetUrl = "https://httpbin.org/ip"

    # 代理服务器(产品官网 www.16yun.cn)
    proxyHost = "t.16yun.cn"
    proxyPort = "31111"

    # 代理验证信息
    proxyUser = "username"
    proxyPass = "password"

    proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
        "host" : proxyHost,
        "port" : proxyPort,
        "user" : proxyUser,
        "pass" : proxyPass,
    }

    # 设置 http和https访问都是用HTTP代理
    proxies = {
        "http"  : proxyMeta,
        "https" : proxyMeta,
    }


    #  设置IP切换头
    tunnel = random.randint(1,10000)
    headers = {"Proxy-Tunnel": str(tunnel)}



    resp = requests.get(targetUrl, proxies=proxies, headers=headers)

    print resp.status_code
    print resp.text
```最后做个小的总结,在获取数据的过程中不建议抓取太多数据,容易对服务器造成负载。本文分享的是爬取招聘网,在实际过程中出现的难点和重点,以及如何防止反爬,做出了相对于的解决方案。对于新手爬虫建议大家积极尝试,有时候看到别人实现起来很简单,但是到自己动手实现的时候,总会有各种各样的问题,只有自己实践了才能掌握到真正的技术。



使用Python爬取Python招聘数据通常涉及网络爬虫技术,可以利用Python的requests库获取网页内容,BeautifulSoup、Scrapy或Pandas等库处理HTML解析并提取所需信息。以下是一个简单的步骤: 1. **导入库**: 首先安装必要的库,如`requests`, `beautifulsoup4`, 可能还需要`lxml`库以提高解析效率。 ```bash pip install requests beautifulsoup4 lxml ``` 2. **发送请求**: 使用`requests.get()`函数从目标网站获取HTML源码。 ```python import requests url = "https://www.example.com/python-jobs" # 替换为你想爬取招聘网站URL response = requests.get(url) html_content = response.text ``` 3. **解析HTML**: 利用BeautifulSoup解析HTML结构,找到包含职位信息的部分。 ```python from bs4 import BeautifulSoup soup = BeautifulSoup(html_content, 'lxml') jobs = soup.find_all('div', class_='job-item') # 类名假设职位信息在这样的div标签内 ``` 4. **数据提取**: 对每个职位元素,提取关键信息如职位名称、描述、薪资等,并存入列表或字典中。 ```python data = [] for job in jobs: title = job.find('h2').text description = job.find('p', class_='description').text salary = job.find('span', class_='salary').text if 'salary' in job else None data.append({ 'title': title, 'description': description, 'salary': salary, }) ``` 5. **存储数据**: 将抓取的数据保存到CSV文件、数据库或其他合适的地方。 ```python import csv with open('python_jobs.csv', 'w', newline='', encoding='utf-8') as f: writer = csv.DictWriter(f, fieldnames=['title', 'description', 'salary']) writer.writeheader() writer.writerows(data) ``` 注意:在实际操作中,需要遵守网站的robots.txt规则,并尊重版权,避免过度频繁访问导致服务器压力增大。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值