cuda11.3 安装

文章介绍了如何检查系统支持的最高CUDA版本,推荐安装CUDA11.3,特别是对于30系列以上显卡的用户。接着,提供了使用pip命令安装PyTorch与CUDA11.3的详细步骤,并给出了测试GPU是否可用的Python代码。此外,提到了CUDA在conda虚拟环境和本机物理机上的安装区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当前最稳定的和支持最多的版本是 cuda10.2 和 cuda11.3

注意:30系列以上的显卡必须安装cuda11.3及以上版本

1.查看系统支持的最高cuda版本

查看命令:

nvidia-smi

查看结果:这里显示的是系统支持的最高cuda版本

 这里可以看到本机系统最高支持cuda11.4,那么就可以安装cuda11.3

2. Pytorch对应的 cuda11.3 安装:

安装命令:

# pytorch==1.12.1  cuda==11.3
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113

3.安装完成测试是否GPU可用

测试代码:

import torch

print(torch.__version__)  # 注意是双下划线
print(torch.version.cuda)
print(torch.cuda.is_available())
print(torch.cuda.get_device_name())

测试结果:

总结:cudatoolkit11.3 属于在conda虚拟环境中装的cuda,而到英伟达官网下载安装的cuda是装到本机物理机上面,一般来说没有特殊需求外,可以使用conda命令将cuda安装到虚拟环境中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值