时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
万圣节的早上,小Hi和小Ho在经历了一个小时的争论后,终于决定了如何度过这样有意义的一天——他们决定去闯鬼屋!
在鬼屋门口排上了若干小时的队伍之后,刚刚进入鬼屋的小Hi和小Ho都颇饥饿,于是他们决定利用进门前领到的地图,找到一条通往终点的最短路径。
鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路。那么小Hi和小Ho至少要走多少路程才能够走出鬼屋去吃东西呢?
提示:顺序!顺序才是关键。
输入
每个测试点(输入文件)有且仅有一组测试数据。
在一组测试数据中:
第1行为4个整数N、M、S、T,分别表示鬼屋中地点的个数和道路的条数,入口(也是一个地点)的编号,出口(同样也是一个地点)的编号。
接下来的M行,每行描述一条道路:其中的第i行为三个整数u_i, v_i, length_i,表明在编号为u_i的地点和编号为v_i的地点之间有一条长度为length_i的道路。
对于100%的数据,满足N<=10^3,M<=10^4, 1 <= length_i <= 10^3, 1 <= S, T <= N, 且S不等于T。
对于100%的数据,满足小Hi和小Ho总是有办法从入口通过地图上标注出来的道路到达出口。
输出
对于每组测试数据,输出一个整数Ans,表示那么小Hi和小Ho为了走出鬼屋至少要走的路程。
样例输入
5 23 5 4
1 2 708
2 3 112
3 4 721
4 5 339
5 4 960
1 5 849
2 5 98
1 4 99
2 4 25
2 1 200
3 1 146
3 2 106
1 4 860
4 1 795
5 4 479
5 4 280
3 4 341
1 4 622
4 2 362
2 3 415
4 1 904
2 1 716
2 5 575
样例输出
123
单点时限:1000ms
内存限制:256MB
描述
万圣节的早上,小Hi和小Ho在经历了一个小时的争论后,终于决定了如何度过这样有意义的一天——他们决定去闯鬼屋!
在鬼屋门口排上了若干小时的队伍之后,刚刚进入鬼屋的小Hi和小Ho都颇饥饿,于是他们决定利用进门前领到的地图,找到一条通往终点的最短路径。
鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路。那么小Hi和小Ho至少要走多少路程才能够走出鬼屋去吃东西呢?
提示:顺序!顺序才是关键。
输入
每个测试点(输入文件)有且仅有一组测试数据。
在一组测试数据中:
第1行为4个整数N、M、S、T,分别表示鬼屋中地点的个数和道路的条数,入口(也是一个地点)的编号,出口(同样也是一个地点)的编号。
接下来的M行,每行描述一条道路:其中的第i行为三个整数u_i, v_i, length_i,表明在编号为u_i的地点和编号为v_i的地点之间有一条长度为length_i的道路。
对于100%的数据,满足N<=10^3,M<=10^4, 1 <= length_i <= 10^3, 1 <= S, T <= N, 且S不等于T。
对于100%的数据,满足小Hi和小Ho总是有办法从入口通过地图上标注出来的道路到达出口。
输出
对于每组测试数据,输出一个整数Ans,表示那么小Hi和小Ho为了走出鬼屋至少要走的路程。
样例输入
5 23 5 4
1 2 708
2 3 112
3 4 721
4 5 339
5 4 960
1 5 849
2 5 98
1 4 99
2 4 25
2 1 200
3 1 146
3 2 106
1 4 860
4 1 795
5 4 479
5 4 280
3 4 341
1 4 622
4 2 362
2 3 415
4 1 904
2 1 716
2 5 575
样例输出
123
裸的单源最短路径,SPFA扫过:
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <vector>
using namespace std;
const int INF=1<<30;
const int MAXN=1005;
struct Edge{
int v;
int cost;
Edge(int vv,int c):v(vv),cost(c){}
};
int n,m,s,ed;
int d[MAXN];
bool vis[MAXN];
vector<Edge>E[MAXN];
void add(int u,int v,int w)
{
E[u].push_back(Edge(v,w));
E[v].push_back(Edge(u,w));
}
void SPFA(int s)
{
memset(vis,false,sizeof(vis));
fill(d,d+n+1,INF);
d[s]=0;
vis[s]=true;
queue<int> q;
while(!q.empty()) q.pop();
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=0;i<E[u].size();i++)
{
int v=E[u][i].v;
if(d[v]>d[u]+E[u][i].cost)
{
d[v]=d[u]+E[u][i].cost;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
}
int main()
{
int x,y,z;
scanf("%d%d%d%d",&n,&m,&s,&ed);
for(int i=0;i<=n;i++) E[i].clear();
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
SPFA(s);
printf("%d\n",d[ed]);
return 0;
}