女神也抵挡不住!什么样的显示新品让志玲姐姐一见倾心?

在过去的几天里,相信许多小伙伴的朋友圈都被AWE2018(中国家电及消费电子博览会)刷屏了。


据统计,3月8日至11日在上海召开的AWE2018,共吸引了25万海内外观众前来观展。除了抢先一睹各种炫酷黑科技的智能家电产品之外,星光汇聚的国际品牌展台也成了整个展区人气最高的地方。譬如在展会开始之前,“去飞利浦展台看志玲姐姐”就成为了许多观众的一大心愿。


自从2017年成为飞利浦屏显类产品的CIO(Chief Image Officer,首席视觉体验官)之后,林志玲秀外慧中、温柔亲和的形象,就帮助飞利浦在中国消费者中提升了不少人气。而在3月9日AWE展馆的飞利浦屏显新品发布会现场,志玲姐姐更是身着一身淡粉薄纱礼服裙亮相,宛如一位不食人间烟火的仙子,瞬时惊艳全场。


令不少观众感到惊喜的是,与志玲姐姐一同亮相的还有飞利浦发布的全系列显示新品。这些新品的尺寸横跨5吋到144吋,覆盖了包括电视、显示器、手机、商用大屏、酒店电视在内的五大屏显类产品。


志玲姐姐惊艳亮相AWE2018


女神也被震撼,志玲姐姐想立即搬回家的显示器什么样?


作为显示器市场的老大哥,飞利浦显示器在本届AWE上在商用、电竞、家用三条核心产品线都推出了旗舰级新品,分别发力高端商用、电竞游戏、影音娱乐三大应用场景,这也让飞利浦显示器展台成为全场焦点。


2018AWE飞利浦商用显示器展台


一、商用显示器发力高端,主打超宽屏、高分辨率和HDR


本届AWE上,飞利浦商用显示器最大的特点就是发力高端,其旗舰机型应用了超宽屏、 8K、HDR、Adobe RGB等高端技术,显示了飞利浦在商用显示器方面的优势和实力。商用显示器中最吸引眼球的新品,莫过于刚刚荣获2018年IF设计大奖的492P8VBEB显示器。


长达1.2米的32:9的超宽比例屏幕、3840×1080的超高分辨率、1800R曲面设计,让许多人第一眼见到这款显示器就会被深深吸引。492P8VBEB显示器的超宽屏幕相当于把两个16:9显示器拼接起来,宽广的视觉体验让现场很多观众赞叹不已。


拥有32:9的超宽屏幕的飞利浦商用显示器492P8VBEB


功能上,492P8VBEB显示器支持多视窗显示技术,而且支持每个视窗单独编辑、多个视窗同时浏览,满足了多任务同时处理的商务精英的需求。特别适用于金融行业的日常股票、期货操作或者专业视频剪辑等应用。


在27吋这种主流尺寸领域,飞利浦新品也在屏幕分辨率、画质等方面极力提升。此次发布的B系列商用显示器新品272B8QJEB,拥有QHD四倍高清IPS屏,而且搭载了飞利浦独家智能人体工学底座及USB3.0扩展接口设计,兼具强大的显示效果和舒适的使用体验。


二、电竞显示器主打全能,“巨幕+4K+HDR”旗舰来袭


除了超宽屏的492P8VBEB,被誉为“桌面巨幕”的电竞HDR旗舰全能显示器436M6VBPAB也吸引了众多媒体和观众的目光。


随着PC电竞游戏的高速发展,游戏玩家对显示器屏幕画质、动态细节的要求越来越高,飞利浦436M6VBPAB正是一款满足电竞发烧友全部幻想的旗舰机型。


飞利浦436M6VBPAB拥有43英寸的超大屏幕、4K超高清分辨率和QD量子点+HDR Premium技术的行业旗舰配置。其HDR参数高达1000,是目前行业的最高水准。“巨幕+4K+HDR”的超强组合,让436M6VBPAB兼具广阔视野、极佳画质色彩和丰富的动态细节呈现。同时,436M6VBPAB还搭载了飞利浦独家创新的“流光溢彩“技术,可通过在显示器底部周围形成光环在视觉上放大屏幕,光环还能动态调节颜色和亮度来匹配图像,为电竞游戏炫酷的视觉效果进一步加分。


在电竞游戏或影音娱乐的视觉体验上,全能旗舰配置的436M6VBPAB全面超越竞争对手,成为电竞发烧友的“王者之选”。


“桌面巨幕”飞利浦HDR旗舰全能显示器436M6VBPAB


三、家用显示器秀外慧中,女神都想搬回家


然而,最令CIO志玲姐姐无法抵挡的,还是一款家用娱乐系列超薄显示器275C8QJSB。它拥有27英寸IPS屏,同时搭载广色域技术,色域值达85%NTSC,同时外观却无比纤薄时尚,厚度仅为7.7mm。


275C8QJSB采用了三边无边框设计,而且创新性地把接口都集成在显示器底座,使得机身更简洁纤薄。看到这款比自己手指都纤细的显示器,林志玲姐姐在现场都忍不住表示:想要立即带一台回家。


让志玲姐姐想立即搬回家的飞利浦家用娱乐显示器275C8QJSB


飞利浦家用娱乐显示器275C8QJSB


从壁纸电视到“用嘴看的电视”,大开眼界的飞利浦电视家族 


本届AWE上,飞利浦电视家族可以说是全面大爆发,一口气发布了OLED电视、壁纸电视、人工智能电视、“水晶幻彩”般质感的“玻璃”电视、8K电视等多款重磅产品,令现场的媒体和观众目不暇接。


作为飞利浦OLED家族目前最薄电视,65OLED993/T3壁纸电视正是因为极致纤薄得名。其采用的分体式设计,让电视屏幕可以轻松吸附在墙壁上,使居家环境呈现极简风格。



通过与腾讯语音云的强强联手,搭载人工智能技术的远场声控电视65OLED913真正实现了“用嘴看电视”的黑科技。不需要遥控器,只要通过语音,该电视不仅可以实现电视节目播放与换台,还可以满足游戏、支付、社交等丰富的智能家居语音场景应用。



通过志玲姐姐现场妙趣横生的互动演示,现场观众切身感受了智能家居中丰富的语音社交场景应用,并见证了语音操控取代遥控器的智能家居发展趋势。 


除此以外,拥有8K画质的电视98PUF9803/T3,以及多款搭载飞利浦独家P5画质增强引擎技术和流光溢彩技术的电视新品,也让整个展台熠熠生辉。不少观众都是第一次见到高达8K分辨率和内置智能光感色彩监控等显示黑科技的电视,这也令他们大开眼界。


目前显示领域的竞争正在变得越来越激烈,尤其是在显示器领域。飞利浦在AWE2018上发布的多款旗舰产品定位精准、发力高端,并融入超宽屏、全高清、业界最高HDR、超薄设计等前沿技术。这不但展现了飞利浦始终在差异化和用户体验上跟自己死磕的劲头,也显示了飞利浦在显示器产品线雄厚的技术研发实力。 


声音:


 “在‘为了改善人们的生活质量,要及时推出有意义的创新’这一品牌发展理念的指引下,皇家飞利浦将与中国的合作伙伴一起,为中国消费者提供最好的产品和服务。”


——飞利浦全球品牌委员会资深总监  Spencer Ramsey

【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值