Leetcode算法学习日志-494 Target Sum

Leetcode 494 Target Sum

题目原文

You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3. 
Output: 5
Explanation: 

-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

  1. The length of the given array is positive and will not exceed 20.
  2. The sum of elements in the given array will not exceed 1000.
  3. Your output answer is guaranteed to be fitted in a 32-bit integer.

题意分析

给定一个数组,给每个元素加上符号+或-,使得所有元素的和为S,输出满足条件的符号分配方案总数。

解法分析

这道题是0,1背包问题的扩展问题,0,1背包原问题如下,给定一组物品的重量,以及背包容量,求问最大可容纳的物品重量,该问题用动态规划的方法解决,令dp[i][j]表示下标i(包含i)物品之前的所有物品来放入背包,j表示现有背包容量,该问题具有最优子结构,dp[i][j]=max(dp[i-1][j],dp[i-1][j-nums[i]),表示放入nums[i]和不放入nums[i]的情况,注意如果j<nums[i],只能取dp[i-1][j],注意初始条件的设置,用自底向上的动态规划完成。如Leetcode 416 Partition Equal Subset Sum,就可以看做找一个子集,使得他们的和为sum的一半,dp[i][j]是一个bool值,dp[i][j]=dp[i-1][j]|dp[i-1][j-num[i]),虽不是最优化问题,但仍然可以利用子结构。C++代码如下:

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum=0;
        for(auto s:nums)
            sum+=s;
        if(sum%2!=0)
            return false;
        int half=sum/2;
        int n=nums.size();
        bool dp[n+1][half+1];
        int i,j;
        for(j=1;j<=half;j++)
            dp[0][j]=false;
        for(i=0;i<=n;i++)
            dp[i][0]=true;
        for(i=1;i<=n;i++){
            for(j=0;j<=half;j++){
                if(j>=nums[i-1])
                    dp[i][j]=dp[i-1][j-nums[i-1]]||dp[i-1][j];
                else
                    dp[i][j]=dp[i-1][j];
            }
        }
        return dp[n][half]; 
    }
};
本题其实也是找一个子集,使得子集的和满足一个target,令符号为正的元素和为P,负的和为N,则P-N=S,P=N+S,而P+N=Sum,所以P=(S+Sum)/2,这里可以将非偶的情况直接输出0.dp[i][j]表示target为j,下标为i之前元素子集为j的组合个数,C++代码如下:

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int n=nums.size();
        int sum=0;
        for(auto s:nums)
            sum+=s;
        if(S>sum)
            return 0;
        int positive=sum+S;
        if(positive%2!=0)
            return 0;
        positive=positive/2;
        vector<vector<int>> dp(n+1,vector<int>(positive+1,0));
        //int dp[n+1][positive+1];
        int i,j;
        for(i=0;i<=n;i++)
            dp[i][0]=1;
        for(i=1;i<=n;i++){
            for(j=0;j<=positive;j++){
                if(j>=nums[i-1])
                    dp[i][j]=dp[i-1][j]+dp[i-1][j-nums[i-1]];
                else
                    dp[i][j]=dp[i-1][j];
            }
        }
        return dp[n][positive];
        
        
    }
};




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值