自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(63)
  • 资源 (1)
  • 收藏
  • 关注

原创 (一)从rnn attention 到 attention withouot rnn 再到transformer

由c的公式可知,每个step的输出c不仅与当前step的输入x有关,更与encoder所有的step的k、v有关,因此它能用到encoder所有的信息。1)得到QKV,去掉rnn之后,直接用输入的词向量去得到KV,与之前的相比,不同的是用词向量去代替RNN的每一个step得到的隐状态h。与attentionlayer不同的是,它输入序列只有一个X,但每一个输出的c与所有的输入x有关,而不是当前step的x。2)K与decoder的当前step的状态s进行softmax操作,得到权重矩阵A。...

2022-08-01 10:43:25 286 1

原创 git快速使用教程

git快速使用教程

2022-06-29 11:03:28 209

原创 transformer:从公式、图片具体理解

3、multi-head self-attention\attentionsingle self-attentionmulti-head self attention本质上就是多个single self-attettnion的堆叠,每个都享有不同的权重,最后再及进行concatmulti-head attention4. 堆积多头注意力变成transformerencoder ,用到了stacked self-attentions每个block层的

2021-12-21 22:22:22 866 2

原创 Attention、self-attention:从计算、公式的角度详解

参考:这个视频量短而精https://www.youtube.com/watch?v=XhWdv7ghmQQGitHub - wangshusen/DeepLearning以机器翻译、rnn-seq2se2引入attention为例1.attention最早提出attention的是15年的这篇论文在encoder结束之后,output一个全局的s0,这包含了h1...hm的所有信息,同时s0也作为decoder的input。用权重apha表示s和h的相关性,..

2021-12-17 11:49:27 673

原创 Pytorch之张量维度及不同维度的操作

参考:pytorch 矩阵维度 - 搜索结果 - 知乎Pytorch 中的 dim操作介绍 - 大数据 - 亿速云1.如何理解dim?pytorch的dim和numpy的axis很类似 不同dim的数据长什么样?维度为0, 0维张量也叫标量 1 维度为1, 0维张量也叫矢量 [1,2] 维度为2, 0维张量也叫

2021-12-15 16:53:38 3668 1

原创 nn.RNN的参数理解

pytorch lstm input_size, hidden_size说明_蓝羽飞鸟的博客-CSDN博客_input_size可视化:pytorch lstm input_size, hidden_size说明_蓝羽飞鸟的博客-CSDN博客_input_sizepytorch中nn.Embedding和nn.LSTM和nn.Linear - 代码先锋网

2021-12-14 09:58:14 846

原创 pytorch之expand repeat

1. expandtensor.expand(*sizes)1expand函数用于将张量中单数维的数据扩展到指定的size。首先解释下什么叫单数维(singleton dimensions),张量在某个维度上的size为1,则称为单数维。比如zeros(2,3,4)不存在单数维,而zeros(2,1,4)在第二个维度(即维度1)上为单数维。expand函数仅仅能作用于这些单数维的维度上。参数*sizes用于逐个指定各个维度扩展后的大小(也可以理解为拓展的次数),对于不需要或者无法(即非单数维)

2021-12-12 15:19:31 958

原创 pytorch之cat()

在给定维度上对输入的张量序列seq进行连接操作>>> x = torch.randn(2, 3)>>> x 0.5983 -0.0341 2.4918 1.5981 -0.5265 -0.8735[torch.FloatTensor of size 2x3]#0表示按列,1表示按行>>> torch.cat((x, x, x), 0) 0.5983 -0.0341 2.4918 1.5981 -0.5265 -0.873.

2021-12-12 14:11:56 634

原创 Pytorch之view()方法

2021-12-12 14:08:13 608

原创 【论文阅读】01 bilstm_crf

2021-12-09 08:55:28 280

原创 bilstm_crf中crf

首先如果我们想像一下,如果没有加crf,billstm能不能做序列标注,也可以。它其实就是转化为了一个多分类问题,但是加入了crf时,就加入了一个约束,效果会更准确。至于这个约束到底是什么?后文会提到。围绕这两个问题来进行效果为什么会更好? loss函数如何计算的? 线性crf又是什么? 问题1 看CRF的作用以单词“中国”为例,它的真实标注应该是“B I",中国=“B I",但是经过lstm之后,选用得分最高对应的标签,得到的是”BB",这是通过得分...

2021-12-08 19:58:36 697 2

原创 CRF_demo+实现

crf和hmm model相同 training不同

2021-12-07 09:19:44 145

原创 【encoder-decoder】

为什么要设计它? 其实它只是一个框架,类似于房子的地基,需要在上面填东西。初衷是为了解决输入输出序列长度不一致的问题? 为什么它可以把任意长度的序列去转换成固定长度的序列? 与填充这个框架所用的模型有关,例如cnn、rnn、seq2seq rnn:rnn能处理任意长度的时序信息。我的理解是,因为它的隐藏层是可以固定的,所以它的长度是固定的,所以可以转化为固定的长度。 cnn: seq2seq:Seq2Seq 是指输入和输出都是序列的模型的统称。 1 基于rnn、seq2s

2021-12-02 11:00:36 346

原创 inception network(bottlle neck)

same填充?​​​​​​同样的输入,达到了同样的输出。但第二种方法是通过用一个1*1的卷积核去实现降维,得到的中中间这一块也叫做(bottle neck)一方便减少了计算成本;另一方面,它可以不用和第一种方法一样去考虑用多大的卷积核,是否用池化层等。这就是inception的基本模块。...

2021-11-27 11:26:52 235

原创 resnet—吴恩达

从第l层到第l+2层,传统的深度学习经过的主路径。但在resnet是,直接从l层到l+2层添加了一个short cut-快捷路径(有时也可以叫skip connection 跳跃连接),是添加线性层之后、relu层之前。...

2021-11-26 22:04:36 1686

原创 【机器学习】吴恩达-ch08-神经网络表示(neural networks represation)

1 非线性假设 当特征数量n过大时,简单的线性回归或者逻辑回归则无法很好的处理该问题。比如建立一个区分汽车的分类器。2 神经元与大脑本质就是模拟人类大脑处理数据,神经网络可认为是一种算法。你可以把任何传感器接入大脑中,大脑的学习算法会找出学习处理数据的方法。3 模型神经元模拟成一个神经单元...

2021-11-26 21:51:57 536

原创 3维卷积—吴恩达

链接:(强推)2021吴恩达深度学习-卷积神经网络_哔哩哔哩_bilibili最后一个3表示:过滤器的层数把3*3*3的卷积核看成一个立方体,共有27个数字,然后把它放在左上角,分别会对应到红色、绿色、蓝色的9个数字,这27个数字分别相乘,最后相加,得到一个数字下一步,移动立方体...

2021-11-26 21:48:32 221

原创 常见的cnn架构—吴恩达

附上视频链接:(强推)2021吴恩达深度学习-卷积神经网络_哔哩哔哩_bilibili​​​​​​LeNet-5 AlexNet VGGNetAlexNet

2021-11-26 21:15:44 482

原创 【机器学习】吴恩达-ch07-过拟合-正则化

1 过拟合问题线性回归逻辑回归拟合不足:预测能力不足适度拟合:过度拟合:泛化能力差,出现过度拟合的主要原因是特征变量太多。如何解决1)减少特征变量的个数:人工的排除一些特征变量 使用模型自动选择算法2)正则化Keep all the features, but reduce the magnitude of parametersθjRegularization works well when we have a lot of slightly usefu..

2021-07-24 11:52:01 150

原创 机器学习-ch04

1、小技巧:绘制J与迭代次数的曲线,判断函数是否在正确的运行,J有没有随迭代次数减少,如果没有,则减小aph2、如何选择合适的学习率aph,绘制J与aph的变化曲线正规方程优缺点n如果是万数级别,则尽量选择梯度下降法...

2021-07-24 09:47:20 253

原创 python学习__基础部分(毕设用的)

python字典一个key对应多个value实现python的字典是一个key对应一个value,如果想要一个key对应多个value,那么可以用collections模块的defaultdict来实现:python的字典是一个key对应一个value,如果想要一个key对应多个value,那么可以用collections模块的defaultdict来实现:from collections import defaultdictd = defaultdict(list)d['one'].ap

2021-03-24 21:41:50 137 1

原创 python学习(一)语法__更新

print打印字符串方式:https://www.jb51.net/article/130867.htm

2021-03-16 19:18:54 85

原创 Python笔记—函数式编程

函数的参数Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。可变参数定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:def calc(*numbers): sum = 0 f..

2020-12-29 09:27:12 90

原创 报错记录:EditText获取文本内容为null

https://blog.csdn.net/weixin_40438421/article/details/104137738?ops_request_misc=%25257B%252522request%25255Fid%252522%25253A%252522160914317316780277011918%252522%25252C%252522scm%252522%25253A%25252220140713.130102334.pc%25255Fall.%252522%25257D&requ

2020-12-28 16:26:30 313

原创 Android Studio里Gradle Sync同步慢的终极解决办法

因为在网上接了个单的原因,又重新准备写一个App,然后就遇到好多问题。1)第一次下的版本太高,20版的,之前下过,这是更新了,然后就开始各种报bug,我实在解决不了,就卸载重新下了个19版的。2)然后又开始遇到新的问题。比如这个:Android Studio里Gradle Sync同步慢问题的解决方法这是其中一种办法,另一种是直接下好,使用本地的gradle,参考这个:https://blog.csdn.net/u010194538/article/details/106011177?utm_m

2020-12-28 10:47:43 2820

原创 tuple list dict和set的记录符号极其区别

分辨tuple,list,dict和set: tuple是用 () 来表示的,比如(1,2,3),它是不可变的,但如果里面有list,list是可变的,适合平常存放数据; list是用 [] 来表示的,比如['c','b'.'a'],它是一个有序集合,可以添加删除元素,适合平常的增删改查使用; dict是用 {} 来表示的,比如{'b': 12, 'a' : 23},它是key-value组合,特性与list类似,但它查找速度快,占用内存高,key必须是不可变的,适合用来快...

2020-12-24 14:42:20 176

原创 python入门学习笔记之高级特性——廖雪峰

切片对list[ ]和tuple()可以切片,例L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']取前m-k个元素:>>> L[m-1:k] 当取前三个时,L[:3]或L[:3];L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3['Michael', 'Sarah', 'Tracy']取倒数几个元素:>>> L[-2:]['Bob', 'Jack']>>&gt.

2020-12-23 15:10:25 141

原创 平衡二叉树如何旋转问题(看图)

一直没太弄明白这个到底是怎么旋转的,我是希望自己脑海中可以想象到画面,这样做题就能快些,所以上网找了些资料,不涉及代码。从这篇文章中受到了启发,终于弄明白了。https://www.jianshu.com/p/d802766551ff单旋转很容易,LR双旋转第一步的结果是:将下面两个数字交换;第二步的结果是:与单旋转相似,可以把它想象成三个并排的数字,中间的数字拱上去。...

2020-08-20 10:32:39 756

原创 word文档打勾的几种做法(好用)

https://www.kafan.cn/A/end6x2x632.html

2020-07-02 16:17:54 490 1

原创 word设置页眉页码 首页没有页眉(终于搞懂了)

1.设置首页没有页眉主要是通过分节符完成的,顾名思义,分节符就是将全文分为两节,然后就可以实现对两节内容的分别设置。比如首页没有页眉。在首页的最后一行插入分节符,然后就会显示出(分节符(下一页)————————————————————)操作步骤如下:分隔符-->下一页(现在就已经分为两节了)然后可以在第二节插入页眉,不要选择链接到上一节,这样在设置第二节时第一节就不会受影响了。把这个取消。2.第一页不设置页码同样的道理,在第一页插入分节符。3.设..

2020-05-17 09:45:31 10538

原创 android stdio 报错Caused by: java.lang.ClassNotFoundException: Didn't find class "android.view.View$On

唉 终于找到问题的解决文法了 看了好多博客 反正现在只知道是版本的问题 其他为什么其实还是不懂 下面直接贴图吧 Caused by: java.lang.ClassNotFoundException: Didn't find class "android.view.View$OnUnhandledKeyEventListener" on path: DexPathList[[zip...

2019-12-17 13:39:08 4686

原创 传输层

2019-10-22 17:16:12 114

原创 安卓ImageView报错问题

10-18 01:37:23.955 17856-17856/com.example.sj E/AndroidRuntime: FATAL EXCEPTION: main java.lang.RuntimeException: Unable to start activity ComponentInfo{com.example.sj/com.example.sj.MainActivity...

2019-10-18 17:52:57 1333

原创 防火墙技术与网络攻击

防火墙技术与网络攻击(★★★)【考法分析】本知识点的考查形式主要有:对于防火墙技术的描述判断正误;给定一些描述判断所属的网络攻击分类或具体的网络攻击方式(主要有拒绝服务、流量分析、重放等)。【要点分析】1、网络攻击分类如下图所示:2、常见的攻击行为(1)拒绝服务:攻击者利用众多傀儡主机向服务器发送服务请求,导致服务器资源被耗尽,无法提供正常的服务,向其他访问者发送拒绝服...

2019-05-22 15:46:04 733

原创 设计模式

总共分为三大类,创建型、结构型和行为型。创建型和对象的建立有关,结构型用于处理类和对象的组合,行为型描述类与对象怎样交互和怎样分配职责。桥接:将对象的抽象和其实现分离,从而独立地改变它们。组合:结构型对象模式的一个实例外观:如何用单个对象表示整个子系统。为子系统中的一组接口提供一个一致的界面。单例:保证一个类只产生唯一的一个实例。适配器:将一个类或对象的接口转换为客户...

2019-05-16 19:40:58 111

原创 计算机基本工作原理

1.三总线结构的计算机总线系统右数据、地址、控制总线组成。因为总线上传输的信息类型分为数据、地址和控制。2.计算机的CPU对以下访问速度依次降低:通用寄存器、Cache、内存、外存。它们共同组成分级存储体系来解决存储容量、成本和速度之家的矛盾。3.指令和数据都是存储在内存中,CPU在执行过程中根据指令周期的不同阶段来区分是指令还是数据。取值周期取出的是指令,执行周期取出的是数据。...

2019-05-16 18:32:51 740

原创 网络安全

网络安全包含了网络信息的可用性、保密性、完整性和网络通信对象的真实性。数字签名:功能:用发送方的私钥加密,接受方用发送方的公钥验证是都来自该发送方,体现了对真实性的保护。...

2019-05-16 15:35:04 201

原创 网络协议

2019-05-16 15:22:36 154

原创 网络互连设备

中继器:是物理层设备。其作用是对接收的信号进行再生放大,一延长传输的距离。网桥:数据链路层设备。可以识别MAC地址,进行帧转发。交换机:数据链路层设备。由硬件构成的多端口网桥路由器:网络层设备,可以识别IP地址,进行数据包的转发。...

2019-05-16 15:00:23 280

原创 结构化分析和设计

总体描述:是软件工程中出现最早的而开发方法,特别适合于数据处理领域的问题,但是不适合于解决大规模、特别复杂的项目1.软件设计时需要遵守的原则:低耦合、高内聚。以此提高模块的独立性。2数据流图: 1.分层的数据流图是结构化分析方法的重要组成部分,描述数据在系统中如何被传送或变换,用于功能建模。 2.对每个基本加工,需要有一个加工规则说明,但不需要描述实现加工的具体流程。可...

2019-05-16 11:47:01 362

EndNote X9中科大版.rar

适合科研新手入门

2021-03-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除