transformer:从公式、图片具体理解

本文深入探讨Transformer模型中的多头自注意力机制,解释了single self-attention和multi-head self-attention的工作原理,并详细阐述了如何通过堆叠多头注意力层构建Transformer的encoder和decoder。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3、multi-head self-attention\attention

single self-attention

multi-head self attention

本质上就是多个single self-attettnion的堆叠,每个都享有不同的权重,最后再及进行concat

multi-head attention

4. 堆积多头注意力变成transformer

encoder ,用到了stacked self-attentions

每个block层的输入和输出的shape是一样的

decoder: 用到了stacked 的attentions

一个decoder block块的形状

可以缩放成以下

输入是两个序列,输出是一个序列。左边的输入序列是encoder的输出,右边的输入是前一个block的输出。

<think>好的,我现在需要详细解释Transformer架构,并通过图解说明其工作机制。首先,我得回顾一下用户提供的引用内容,确保信息准确。用户提到了引用[1]到[4],其中关键点包括Encoder-Decoder结构、注意力机制以及黑盒模型在翻译任务中的应用。 首先,我应该从整体结构入手。根据引用[3],Transformer本质上是Encoder-Decoder架构,分为编码器和解码器两部分。需要明确每个部分的作用,以及它们如何连接。然后,注意力机制是核心,引用[1]强调了其重要性,可能需要详细解释自注意力机制和多头注意力的工作原理。 接下来,用户希望有图解说明。虽然无法直接插入图片,但可以用文字描述各个模块的结构,比如编码器层包含自注意力层和前馈网络,解码器层还包含编码器-解码器注意力层。同时,输入处理的位置编码需要提到,因为这是Transformer处理序列位置信息的关键。 工作机制部分,可以按步骤分解:输入嵌入、位置编码、编码器处理(自注意力、前馈网络)、解码器处理(自注意力、编码器-解码器注意力、前馈网络),最后输出生成。每个步骤需要简要说明其作用,比如自注意力如何捕捉序列内部关系,编码器-解码器注意力如何连接两个部分。 还要注意引用相关文献,比如在提到注意力机制时引用[^1],提到Encoder-Decoder结构时引用[^3]。可能还需要提到应用场景,如机器翻译(引用[^2])来具体说明其工作机制。 用户的问题可能涉及Transformer的各个组件,比如自注意力的计算、位置编码的实现方式、多头注意力的优势,以及训练和推理过程的不同。需要确保这些点都有覆盖,并且解释清晰,避免技术术语过多导致理解困难。 最后,生成相关问题时要考虑用户可能的后续疑问,比如不同注意力变体的区别、Transformer的优化方法、实际应用中的挑战等。确保问题覆盖架构细节、工作机制和实际应用,帮助用户深入理解。</think>### Transformer架构详解 Transformer是一种基于**Encoder-Decoder(编码器-解码器)**结构的深度学习模型,专为处理序列数据(如文本)设计[^3]。其核心创新在于**自注意力机制**(Self-Attention),使模型能够动态捕捉输入序列中不同位置的关系。以下是其核心组件和工作机制的图解式说明: --- #### 1. **整体架构** ``` 输入序列 → [编码器] → 中间表示 → [解码器] → 输出序列 ``` - **编码器**:将输入序列(如源语言句子)转换为包含全局信息的中间表示。 - **解码器**:基于中间表示逐步生成输出序列(如目标语言句子)。 --- #### 2. **编码器组件** 每个编码器层包含两个子层: 1. **多头自注意力层** - 计算输入序列中每个词与其他词的相关性权重,生成上下文感知的表示。 - 公式: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 其中,$Q$(Query)、$K$(Key)、$V$(Value)由输入向量线性变换得到,$d_k$ 为向量维度。 2. **前馈神经网络(FFN)** - 对注意力输出进行非线性变换,增强模型表达能力。 --- #### 3. **解码器组件** 解码器在编码器基础上增加一个子层: 1. **掩码多头自注意力层** - 防止解码时“看到”未来信息(通过掩码实现)。 2. **编码器-解码器注意力层** - 将解码器的查询(Query)与编码器的键(Key)、值(Value)对齐,实现跨语言信息交互[^3]。 3. **前馈神经网络** --- #### 4. **输入处理** - **词嵌入**:将词转换为向量(如512维)。 - **位置编码**:通过公式注入位置信息,解决序列顺序问题: $$ PE_{(pos,2i)} = \sin(pos/10000^{2i/d}) $$ $$ PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d}) $$ 其中,$pos$ 为位置,$i$ 为维度索引[^4]。 --- #### 5. **工作机制示例(以机器翻译为例)** 1. **编码阶段** - 输入句子通过编码器生成中间表示,捕获全局语义(如“猫坐在垫子上”)。 2. **解码阶段** - 解码器逐步生成目标语言词(如“The cat sat on the mat”),每一步依赖已生成的词和编码器输出。 --- ### 图解关键模块 (以下为文字描述,实际可参考示意图[^4]) 1. **自注意力计算图** - 输入向量 → 生成$Q/K/V$ → 计算注意力权重 → 加权求和输出。 2. **多头注意力** - 并行多组自注意力计算,拼接后通过线性层融合。 3. **Encoder-Decoder交互** - 解码器的查询与编码器的键、值交互,聚焦于源语言相关部分。 --- ### 应用场景 - **机器翻译**:端到端生成目标语言句子。 - **文本生成**:如GPT系列模型。 - **语音识别**:将音频序列转换为文本。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值