粒子群优化算法

本文深入探讨了粒子群优化算法的基本思想和算法流程,通过代码实现展示了其在优化问题中的应用。重点分析了c1、c2、w参数变化以及种群规模(sizepop)和适应度函数维数(dim)对算法性能的影响,发现参数的合理选择对于算法的收敛速度和最优解的质量至关重要。
摘要由CSDN通过智能技术生成

一、粒子群算法

1.基本思想

粒子群算法( Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。最简单有效的策略?寻找鸟群中离食物最近的个体来进行搜素。PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。
用一种粒子来模拟上述的鸟类个体,每个粒子可视为N维搜索空间中的一个搜索个体,粒子的当前位置即为对应优化问题的一个候选解,粒子的飞行过程即为该个体的搜索过程.粒子的飞行速度可根据粒子历史最优位置和种群历史最优位置进行动态调整.粒子仅具有两个属性:==速度和位置,速度代表移动的快慢,位置代表移动的方向。==每个粒子单独搜寻的最优解叫做个体极值,粒子群中最优的个体极值作为当前全局最优解。不断迭代,更新速度和位置。最终得到满足终止条件的最优解。

2.算法流程

1、初始化

首先设置最大迭代次数,目标函数的自变量个数,粒子的最大速度,位置信息为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置,设置粒子群规模为M,每个粒子随机初始化一个飞翔速度。

2、 个体极值与全局最优解
定义适应度函数,个体极值为每个粒子找到的最优解,从这些最优解找到一个全局值,叫做本次全局最优解。与历史全局最优比较,进行更新。

3、 更新速度和位置公式

4、 终止条件
(1)达到设定迭代次数;(2)代数之间的差值满足最小界限

二、代码实现

PSO.m


%% 清空环境
clc
clear

%% 参数初始化
%粒子群算法中的三个参数
c1 = 2;%加速因子
c2 = 1;
w = 0.8   %惯性权重

maxgen=1000;   % 进化次s数  
sizepop=500;   %种群规模

Vmax=1;       %限制速度围
Vmin=-1;     
popmax=5;    %变量取值范围‘ 
popmin=-5;
dim=10;       %适应度函数维数

func=1;       %选择待优化的函数,1为Rastrigin,2为Schaffer,3为Griewank
Drawfunc(func);%画出待优化的函数,只画出二维情况作为可视化输出

%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=popmax*rands(1,dim);    %初始种群
    V(i,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值