训练方法1

根据导师给的一些论文资料,调整了网络框架,将隐藏层改为10-9-8-7-6-5-4-3-2-1的结构激活函数等算法不变,将网络改为收敛的形状符合线性回归的需要。在这里插入图片描述
根据这种模式将学习率调整为0.0001迭代次数5000次,最终得到loss率为1左右,然后利用训练数据来测试网络的预测能力在这里插入图片描述
测试数据
在这里插入图片描述
这是模型的预测结果在这里插入图片描述
单位为0.1nm,误差在1%左右,显然网络的精准预测能力还是偏弱,但是已经初步达到线性回归的要求。
问题1:是否是源数据精度不够?
问题2:是否是源数据量太少?
问题3:包层折射率在1.40——1.43区段,网络的预测能力极差?
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值