相反数问题

#引子

或许你已经知道了问题的描述,不过这里再重复一遍,因为很羞赧的说:“这个问题,我栽了个大跟头!”(尽情嘲笑我吧!/(ㄒoㄒ)/~~)

一个整数1234与它倒序数4321和称之为相反数。现在的问题要求是:从控制台输入一个整数n (1 ≤ n ≤ 10 ^ 5),输出它的相反数。如1234,就输出1234 + 4321 = 5555。

#从容入坑

既然待处理的值是一个整数,一个简单的想法是把输入的数用一个long来存储(64位系统,int是4个字节,是可以代表以上整数范围的,但考虑到32位系统,就使用长整型吧。)。再用一个long来表达最终的结果值result,在输入n后就把它加入到result中。现在result与最后的正确结果就缺少它的倒序数了。

因为我们不知道最终输入的n总共有几位,所以如果要取出n的每一位,就不得不让其依次除以100000、10000、1000、100、10。然后乘以最终的除数,并乘以分别的倍数1、10、100、1000、10000、100000。然后你就会发现,这个决定有一个Bug,如果不是6位的数字,在进行10000、100000的倍乘时,会出现问题。所以要让这个方法可行的话,还要判断当前输入数字的位数。但是问题的本身真的有这么复杂吗?

#重回正轨

重新审一下题,输入元是一个知道大小范围的整数,确切来说是知道位数的整数。这给我们透露了什么样的信息了?是的,使用字符串处理。因为从控制台输入的内容本质上都是字符串类型,然后在运行时,系统会自动匹配对应类型,比如将它作为int或者string存储。使用字符串带来的好处是问题的解决过程就是字符串的倒序和顺序的字符和,再将其转换成数字即可。一个简单的实现可以兑现为:

#include <iostream>

using namespace std;

int main() {
    string str;
    int zeroASCII = '0';

    cin >> str;

    for (int i = 0; i < str.length(); i ++) {
        int noASCII = str[i];
        int reNoASCII = str[str.length() - 1 - i];

        int resultASCII = noASCII - zeroASCII + reNoASCII - zeroASCII;

        cout << resultASCII;
    }

    cout << endl;

    return 0;
}

#总结

算法的实现过程其实很简单,就是利用字符的ASCII码的差值来实现字符的相加。在OC中我们有现成的API可以完成字符串转成int,而其实它的底层实现或许就是通过这样的一个方式来转换的。真是高级的API用多了,最基本的线性过程工作流竟都有点忘却了,这里记录一笔:好好自省。算法和数据结构方面需要恶补,这种小白菜级别的问题都掉入了坑里,真是让人觉得汗颜!

面壁思过一百天中……

#勘误

上述例程没有考虑到进位问题,在牛客网上只能通过40%的测试用例,以下是它的修订版本:

#include <iostream>
#include <stack>

using namespace std;

int main() {
    string str;

    stack<int> result;

    int zeroASCII = '0';
    unsigned short int carryFlag = 0;

    cin >> str;

    for (int i = int(str.length() - 1); i >= 0; i --) {
        int noASCII = str[i];
        int reNoASCII = str[str.length() - 1 - i];

        int resultASCII = noASCII - zeroASCII + reNoASCII - zeroASCII + carryFlag;

        if (i == 0) {
            result.push(resultASCII);
        } else {
            carryFlag = resultASCII / 10;

            result.push(resultASCII % 10);
        }
    }

    int count = int(result.size());
    for (int i = 0; i < count; i ++) {
        cout << result.top();

        result.pop();
    }

    cout << endl;

    return 0;
}
### C++ 中计算相反数的方法以及表示负数的方式 在 C++ 编程语言中,可以通过多种方式实现对数值的相反数计算。以下是几种常见的方法及其背后的理论依据。 #### 方法一:通过数学运算符 `-` 实现 最简单直接的方式是利用减号运算符 `operator-` 来获得一个数的相反数。例如: ```cpp int num = 5; int oppositeNum = -num; // 结果为 -5 ``` 这种方式依赖于编译器底层实现,通常会自动转换成补码形式存储负数[^1]。 --- #### 方法二:通过位运算「取反 + 加 1」实现 另一种更深入理解计算机内部机制的方式是手动模拟补码的生成过程——通过对正数执行 **按位取反** **加 1** 的操作来得到其对应的负数。 具体代码如下所示: ```cpp #include <iostream> using namespace std; int getOppositeNumber(int num) { return (~num) + 1; // 对 num 取反并加 1 得到相反数 } int main() { int num = 7; cout << "Original number: " << num << endl; cout << "Opposite number: " << getOppositeNumber(num) << endl; // 输出 -7 return 0; } ``` 此逻辑基于这样一个事实:任何整数 \( x \),它的相反数可以由公式 \( -(x) = (!x) + 1 \) 描述][^[^24]。 --- #### 方法三:借助标准库函数 `std::abs()` 获取绝对值再处理 如果目标是从已知的一个正值推导出另一个具有相同大小但符号不同的数,则还可以考虑调用 `<cmath>` 头文件中的 `std::abs()` 函数辅助完成任务。 示例程序片段如下: ```cpp #include <iostream> #include <cmath> // 需要引入 cmath 库支持 abs() using namespace std; int main(){ int originalValue = -89; int absoluteValue = abs(originalValue); // |originalValue| -> 正向量 if (originalValue >= 0){ cout<<-(absoluteValue)<<endl; // 若输入非负则返回对应负值 } else{ cout<<+(absoluteValue)<<endl; // 否则反之亦然 } return 0; } ``` 注意这种方法虽然直观易懂,但在性能敏感场景下可能不如前两种高效。 --- #### 关于负数的存储与表现形式 按照现代计算机体系结构设计原则,在绝大多数情况下(包括但不限于 C/C++),有符号整型数据类型均采用 **补码编码方案** 存储实际数值。这意味着无论是显示还是参与各种算术运算时,系统都会默认遵循这一规则解释内存单元里的比特序列含义[^3]. 举例来说,假设某机器字长为 8 bits 并且定义了一个变量 y=-6 ,那么它最终会被记录为 `(11111010)` 这样的模式;而当再次读回这个位置上的信息准备打印出来或者进一步加工之前,也会重新映射回去成为人类熟悉的十进制记法下的 "-6"[^4]. --- ### 总结 综上所述,C++ 提供了灵活多样的途径让用户能够轻松地针对不同需求选取合适的策略去解决有关求解某个特定数字之逆元的问题。既可以依靠内置语法糖衣简化书写负担,也可以亲手操刀细琢每一个细节环节深入了解硬件层面运作机理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值