codeforces 295D Greg and Caves

蒟蒻再一次被虐傻了。。。。。

原先yy了一个dp方案:考虑上半段(一个正立的三角),f[i][j]表示从从小往大放,现在的底为i,高为j的方案数。

再从搞一个下半段的计数h[i][j],表示目前高为j,接下来放的底大小为i(当前的严格小于i)的方案数。

可以发现,f[i][j]的计算很容易用O(n^3)内的时间内得到,h也很容易由f算得。(利用前缀和很容易把f的计算优化到O(n^2))

只要利用乘法原理吧两个数组合成g[i][j],表示此图形最宽处为i,高位j的方案数。ans=sigma( g[i][j]*(m-i+1)*(n-j+1) )

交了发代码,不负众望的T了,罪魁祸首就是下面的代码:

  for (i=2;i<=m;i++){
    for (j=1;j<=n;j++)
      for (k=0;k<=j;k++)
        g[i][j]=(g[i][j]+(LL)f[i][k]*h[i][j-k]%Mod)%Mod;
  }

很容易发现每一个循环i下面的计算其实是个卷积——FFT!

结果。。。。

double暴精度了T_T。。。。。


看来这方法行不通了!

我们得另辟蹊径

利用h计算的方法似乎无法优化了,那么我们就把它丢了奋斗

没了h我们怎么计算呢?不妨把f数组继续向下推导!但是这样是不是我们需要再多以为状态记录最宽处宽度才行呢?

其实没有必要!

我们可以看到每次f数组自身内的转移时加减法,而最后计算答案是才用到乘法,这样乘法分配率可以把这些东西结合起来,也就说计算完f之后把f[i][j]*=(m-i+1)在转移即可。

写出方程后不拿发现这样的方程仍然是很容易用前缀和优化的微笑

复杂度O(n^2)


#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long LL;
const int Mod=(1e9)+7;
int n,m,ans,i,j,k,tmp,f[2005][2005];
int sum[2005][2005],h[2005][2005];

int main(){
  //freopen("295D.in","r",stdin);
  //freopen("295D.out","w",stdout);
  scanf("%d%d",&n,&m);
  
  for (i=2;i<=m;i++){
    f[i][1]=1;
    sum[i][1]=i-1;
  }
  for (i=2;i<=n;i++)
    for (j=2;j<=m;j++){
      f[j][i]=(f[j-1][i]+sum[j][i-1])%Mod;
      sum[j][i]=(f[j][i]+sum[j-1][i])%Mod;
    }
  memset(sum,0,sizeof(sum));
  for (i=1;i<=n;i++)
    for (j=m;j>0;j--){
      f[j][i]=(LL)f[j][i]*(m-j+1)%Mod;
      sum[j][i]=(sum[j+1][i]+f[j][i])%Mod;
    }

  for (i=2;i<=n;i++){
    for (j=m;j>1;j--)
      h[j][i]=(h[j+1][i]+sum[j][i-1])%Mod;
    for (j=m;j>1;j--)
      h[j][i]=(h[j][i]-f[j][i-1]+Mod)%Mod;
  }
  memset(sum,0,sizeof(sum));
  for (i=2;i<=n;i++)
    for (j=m,tmp=0;j>1;j--){
      tmp=(tmp+sum[j][i-1])%Mod;
      h[j][i] = ( h[j][i]+tmp )%Mod;
      sum[j][i] = ( sum[j+1][i]+h[j][i] )%Mod;
    }

  for (i=1;i<=m;i++)
    for (j=1;j<=n;j++){
      ans=(ans+(LL)f[i][j]*(n-j+1)%Mod)%Mod;
      ans=(ans+(LL)h[i][j]*(n-j+1)%Mod)%Mod;
    }
  printf("%d\n",ans);
  return 0;
}



### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值