双馈风机风电场串补振荡仿真模型及参考文献分享:DFIG-SSO SSR simulink仿真

双馈风机风电场经串补并网次同步振荡/谐振仿真模型,附参考文献。
DFIG-SSO/SSR simulink仿真
包含模型中红体字提到的参考文献。
可运行,振荡程度可自调,运行结果很理想。
可选择matlab2021版本与2019版本。

ID:6750715882716373

林同学哈


双馈风机(Double Fed Induction Generator, DFIG)作为风电场中常用的发电装置之一,其在并网运行过程中可能会出现串补(Subsynchronous Resonance, SSR)现象和次同步振荡(Subsynchronous Oscillation, SSO)。为了研究和模拟这些问题,需要建立相应的仿真模型。

本文将围绕双馈风机风电场经串补并网次同步振荡谐振仿真模型展开讨论,并附上相应的参考文献。

首先,我们需要提及双馈风机的基本原理和工作方式。双馈风机由风轮、双馈感应发电机、功率变流器等组成。当风轮受到风力作用时,通过传动装置驱动双馈感应发电机旋转。发电机通过转子上的转子绕组与外部电网相连,并通过功率变流器将发电机产生的电能注入电网。

然而,双馈风机在并网运行中可能会出现串补问题。串补是指在电网故障或其他异常情况下,双馈风机的转子绕组与电网之间可能会出现谐振现象。这种谐振可能导致电网振荡、电网电压不稳定等问题,对电网运行安全性造成影响。

为了研究和模拟串补问题,我们可以使用Simulink进行仿真。Simulink是Matlab软件中的一种工具,可以方便地建立系统级模型,并进行各种仿真分析。

在Simulink中建立双馈风机的串补仿真模型,可以通过调整模型中的参数来模拟不同情况下的串补现象。我们可以选择不同版本的Matlab进行仿真,比如2021版本和2019版本。

在模型中,我们可以设置振荡程度可自调,以便观察不同振荡程度下的运行结果。通过仿真模型的运行结果,我们可以评估双馈风机在不同情况下的运行性能,并根据需要进行优化。

在建立仿真模型的过程中,我们可以参考一些相关的文献。这些文献可能提供了关于双馈风机串补和次同步振荡的详细理论分析、模型建立方法和实验数据等内容。通过参考这些文献,我们可以获得更深入的了解,并对仿真模型进行更准确的建立和分析。

综上所述,本文围绕双馈风机风电场经串补并网次同步振荡谐振仿真模型展开讨论,并附上参考文献,以提供给读者一个深入了解该问题的视角。通过Simulink仿真工具的运用,可以方便地建立模型,进行仿真分析,并评估双馈风机在不同情况下的运行性能。读者可以根据自己的需求选择不同版本的Matlab进行仿真,以获得理想的运行结果。同时,通过参考相关文献,读者可以更加深入地了解双馈风机的串补和次同步振荡问题,为问题的解决和优化提供更多的参考依据。

【相关代码,程序地址】:http://fansik.cn/715882716373.html

### 关于直驱风机发电机组比例优化配置的分析 #### 配置优化的目标 在风电场设计中,直驱风机发电机组的比例优化配置旨在实现经济效益最大化的同时兼顾系统的稳定性和可靠性。永磁直驱风力发电机因其高效能、低损耗以及易于维护的特点,在现代风电领域占据重要地位[^3]。 #### 数据建模与仿真工具的应用 通过使用专业的电磁计算软件(如RMxprt和Maxwell 2D),可以对不同类型的风力发电机进行详细的性能评估。这些工具有助于模拟实际运行条件下的电气特性和机械特性,从而为优化配置提供数据支持[^1]。 #### 经济性考量 考虑到长期运营成本,包括初始投资费用、运维支出等因素,合理分配不同类型风机的数量显得尤为重要。研究表明,尽管永磁同步电机初期投入较高,但由于其卓越的能量转换效率及较少的后期维护需求,总体拥有成本可能更低。 #### 可靠性评价指标 除了经济因素外,还需关注整个风电系统的可靠度水平。这涉及到单台设备故障率统计分析以及冗余设计方案的选择等方面的工作。对于特定地理环境条件下可能出现的问题——比如潮湿气候下绝缘材料的老化现象,则需参照相关研究资料采取预防措施[^4]。 以下是基于上述理论框架的一个简单Python脚本示例用于初步估算两种机型的最佳组合比率: ```python def optimize_ratio(cost_pm, cost_df, efficiency_pm, efficiency_df, maintenance_pm, maintenance_df): ratios = [] total_efficiencies = [] for pm_percentage in range(0, 101): df_percentage = 100 - pm_percentage avg_cost = (pm_percentage / 100 * cost_pm + df_percentage / 100 * cost_df) avg_maintenance = (pm_percentage / 100 * maintenance_pm + df_percentage / 100 * maintenance_df) weighted_efficiency = ((pm_percentage / 100 * efficiency_pm) + (df_percentage / 100 * efficiency_df)) net_benefit = weighted_efficiency - avg_cost - avg_maintenance ratios.append((pm_percentage, df_percentage)) total_efficiencies.append(net_benefit) best_index = total_efficiencies.index(max(total_efficiencies)) return ratios[best_index] result = optimize_ratio(5e6, 4e6, 0.97, 0.94, 0.05, 0.1) print(f"Optimal PM Generator Percentage: {result[0]}%, DFIG Generator Percentage: {result[1]}%") ``` 此代码片段仅作为概念验证用途,并未考虑所有现实世界变量的影响。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值