Java面试笔试-getClass

下面的程序是否存在问题?如果存在,请指出问题所在;如果不存在,书名输出结果

package com.interview.test;

class TestSuper{}

public class TestClass_201808 extends TestSuper{
	
	public static void main(String[] args) {
		TestClass_201808 t = new TestClass_201808();
		t.test();
	}
	
	public void test() {
		System.out.println(super.getClass().getName());
	}
}

答案:com.interview.test.TestClass_201808(包名.类名)

分析:

解答这题,首先需要明确getClass()方法。getClass()方法继承自Object类,是一个final的本地方法,官方文档翻译如下:

返回此 Object 的运行时类。返回的 Class 对象是由所表示类的 static synchronized 方法锁定的对象。

实际结果类型是 Class<? extends |X|>,其中 |X| 表示清除表达式中的静态类型,该表达式调用 getClass。 例如,以下代码片段中不需要强制转换:

Number n = 0; 
Class<? extends Number> c = n.getClass();​​​​​​​

可以看出,getClass()方法返回的是当前运行时的类,而在上面的代码中实际运行的类是TestClass_201808,而不是TestSuper,因此程序的输出结果为com.interview.test.TestClass_201808(全路径)

思考:

1.既然Object类的getClass()方法是final的,那么所有的getClass()都遵循相同的逻辑。因此在类中使用super.getClass().getName()和this.getClass().getName()获取的结果是相同的,都是当前运行时的类(父类为abstract时也适用);

2.那么在子类中如何获取父类的名字呢,有两种方法,第一种,可以通过反射机制,使用getClass().getSuperclass().getName()获取;第二种,使用SuperClassName.class获取(父类为abstract时也适用);

package com.interview.test;

class TestSuper{}

public class TestClass_201808 extends TestSuper{
	
	public static void main(String[] args) {
		TestClass_201808 t = new TestClass_201808();
		t.test();
		t.test1();
		t.getSuperClassName1();
		t.getSuperClassName2();
	}
	
	//com.interview.test.TestClass_201808
	public void test() {
		System.out.println(super.getClass().getName());
	}
	
	//com.interview.test.TestClass_201808
	public void test1() {
		System.out.println(this.getClass().getName());
	}
	
	//com.interview.test.TestSuper
	public void getSuperClassName1() {
		System.out.println(getClass().getSuperclass().getName());
	}
	
	//com.interview.test.TestSuper
	public void getSuperClassName2() {
		System.out.println(TestSuper.class.getName());
	}
}

3。如果子类实现的是接口,那么getClass().getSuperclass().getName()返回的是Object;

package com.interview.test;

interface TestSuper{	
}

public class TestClass_201808 implements TestSuper{
	
	public static void main(String[] args) {
		TestClass_201808 t = new TestClass_201808();
		t.getSuperClassName1();
	}
	
	public void getSuperClassName1() {
		System.out.println(getClass().getSuperclass().getName());//java.lang.Object
		System.out.println(getClass().getInterfaces()[0].getName());//com.interview.test.TestSuper
	}
}

4.当父类持有子类的对象时,即TestSuper t = new TestClass_201808(),结果同上;

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值